

Overview of scalable plasma source R&D for the AWAKE project at CERN

Birger Buttenschön, Olaf Grulke (IPP Greifswald)

Marcelo Baquero, Renat Karimov, Christine Stollberg, Philippe Guittienne, Ivo Furno (EPFL/SPC)

Marcel Granetzny, Farhana Sharmin, Michael Zepp, Barret Elward, Oliver Schmitz (University of Wisconsin)

Nuno Torrado, Nelson Lopes (IST-Lisbon)

Claudia Cobo, Louis Forrester, Zulfikar Najmudin (Imperial College London)

Carolina Amoedo, Miguel Santos, Alban Sublet (CERN)

Outline

Scope and challenges of scalable plasma source R&D

Diagnostics and plasma characterization

Towards scalability for AWAKE Run 2d

Summary

- 2029, after LS3 for HL-LHC preparation → AWAKE Run 2c
- Goals: external injection of e- witness beam, preserved beam quality and acceleration

- 2029, after LS3 for HL-LHC preparation → AWAKE Run 2c
- Goals: external injection of e- witness beam, preserved beam quality and acceleration

- 2029, after LS3 for HL-LHC preparation → AWAKE Run 2c
- Goals: external injection of e- witness beam, preserved beam quality and acceleration

- 2029, after LS3 for HL-LHC preparation → AWAKE Run 2c
- → Two plasma sources: laser ionized Rb vapor

Modulator plasma source:

- Laser/e- Seeded Self Modulation (SSM) of proton bunch
- Density step to preserve wakefield amplitude along the plasma

→ What's next: **scalability**, towards **AWAKE Run 2d**

- Laser field ionization of Rb vapor limited in length
- Develop a **scalable plasma source** to avoid stagging
- And to reach higher energies: E >10 GeV, 10+m
- → **Dedicated R&D on scalable plasma source** to be ready for experiments in 2030s

Scalable plasma source R&D

- R&D towards AWAKE Run 2d:
 - Helicon Plasma Source (HPS): RF-wave heated plasma
 - Discharge Plasma Source (DPS): pulsed DC discharge

- Challenge: achieve 0.25% plasma uniformity at $n_e = 7x10^{14} \text{ cm}^{-3}$
 - → focus on plasma diagnostics and source design optimization
- Work in parallel on scalability and tunability:
 - For HPS: stacking RF-antenna/generators/coils → large investment
 - For DPS: stacking sources → challenging source design and electrical circuit

Scalable plasma source R&D

- R&D towards AWAKE Run 2d:
 - Helicon Plasma Source (HPS): RF-wave heated plasma
 - Discharge Plasma Source (DPS): pulsed DC discharge

- Challenge: achieve 0.25% plasma uniformity at $n_e = 7x10^{14} \text{ cm}^{-3}$
 - → focus on plasma diagnostics and source design optimization
- Work in parallel on scalability and tunability:
 - For HPS: stacking RF-antenna/generators/coils → large investment
 - For DPS: stacking sources → challenging source design and electrical circuit

Milestones:

- 1. May 2023 run: 10 m DPS in AWAKE \rightarrow SMI with DPS/ion motion/filamentation/...
- 2. End 2024/begin 2025: first density uniformity profile with 1 m HPS and 3 m DPS
- 3. End 2025: Internal review whether scalable technology can already be used for Run 2c
- 2028: Scalable Plasma Source review and decision for Run 2d scalable source

Scalable source technologies

Helicon Plasma Source (HPS)

→ RF wave heated plasma, pulsed 10 Hz rep. rate

Low frequency EM waves along B-field

- Intrinsically length scalable
- Complex physics, requires B-field, density challenging, homogeneity

Discharge Plasma Source (**DPS**)

→ pulsed-DC discharge, 1 Hz rep. rate

Pulsed high voltage discharge

- + Relatively simple setup, very flexible, density scalable
- Length scalability, homogeneity

B Buttenschön et al 2018 Plasma Phys. Control. Fusion 60 075005

- Thomson scattering, IR and millimetre wave interferometry on HPS and DPS → EPFL, MPP and CERN
 - Axial density profile along the sources with TS: <u>2024 Plasma Phys. Control. Fusion 66 115011</u>
 - Validation of mm-wave technique across the plasma tube on both sources with 100 GHz heterodyne setup → developing a 350-400 GHz setup
 - Transverse IR interferometry on HPS and longitudinal interferometry on DPS

- Thomson scattering, IR and millimetre wave interferometry on HPS and DPS → EPFL, MPP and CERN
 - Axial density profile along the sources with TS: 2024 Plasma Phys. Control. Fusion 66 115011
 - Validation of mm-wave technique across the plasma tube on both sources with 100 GHz heterodyne setup → developing a 350-400 GHz setup
 - Transverse IR interferometry on HPS and longitudinal interferometry on DPS
- Laser induced fluorescence, millimetre wave and RF modelling on MAP HPS → University of Wisconsin
 - Transverse line average and time resolved density measurements: arXiv:2503.11009
 - Assessment of plasma directionality as a function of B-field and antenna direction: *Phys. Plasmas 30, 120701 (2023)*
 - MAP setup, effect of gas flow and plasma directionality, density scaling with RF power: Phys. Plasmas 32, 093507 (2025)
 - COMSOL model to define a simple relation between antenna shape and core density: arXiv:2502.02733

- Thomson scattering, IR and millimetre wave interferometry on HPS and DPS → EPFL, MPP and CERN
 - Axial density profile along the sources with TS: 2024 Plasma Phys. Control. Fusion 66 115011
 - Validation of mm-wave technique across the plasma tube on both sources with 100 GHz heterodyne setup → developing a 350-400 GHz setup
 - Transverse IR interferometry on HPS and longitudinal interferometry on DPS
- Laser induced fluorescence, millimetre wave and RF modelling on MAP HPS → University of Wisconsin
 - Transverse line average and time resolved density measurements: arXiv:2503.11009
 - Assessment of plasma directionality as a function of B-field and antenna direction: Phys. Plasmas 30, 120701 (2023)
 - MAP setup, effect of gas flow and plasma directionality, density scaling with RF power: Phys. Plasmas 32, 093507 (2025)
 - COMSOL model to define a simple relation between antenna shape and core density: <u>arXiv:2502.02733</u>
- Longitudinal (2D) + transverse interferometry and optical emission spectroscopy on DPS → Imperial college

- Imperial College London
- Spectroscopy over 1 m long plasma to assess spectral emission longitudinal uniformity and potentially derive Te and ne from line ratio
- Time resolved radial profile (averaged over length) of plasma density: radial plasma dynamic
- Development of a transverse multi-pass interferometry in parallel to the longitudinal one

Thomson scattering, IR and millimetre wave interferometry on HPS and DPS → EPFL, MPP and CERN

Axial density profile along the sources with TS: 2024 Plasma Phys. Control. Fusion 66 115011

- Validation of mm-wave technique across the plasma tube on both sources with 100 GHz heterodyne setup → developing a 350-400 GHz setup

- Transverse IR interferometry on HPS and longitudinal interferometry on DPS
- Laser induced fluorescence, millimetre wave and RF modelling on MAP HPS → University of Wisconsin
 - Transverse line average and time resolved density measurements: arXiv:2503.11009

- Assessment of plasma directionality as a function of B-field and antenna direction: Phys. Plasmas 30, 120701 (2023)
- MAP setup, effect of gas flow and plasma directionality, density scaling with RF power: Phys. Plasmas 32, 093507 (2025)
- COMSOL model to define a simple relation between antenna shape and core density: arXiv:2502.02733
- Longitudinal (2D) + transverse interferometry and optical emission spectroscopy on DPS → Imperial college

- Spectroscopy over 1 m long plasma to assess spectral emission longitudinal uniformity and potentially derive Te and ne from line ratio
- Time resolved radial profile (averaged over length) of plasma density: radial plasma dynamic
- Development of a transverse multi-pass interferometry in parallel to the longitudinal one
- longitudinal interferometry and stability studies on **DPS**, source design → IST Lisbon
 - Pulsed-DC generator development and current balancing scheme in view of scalability test
 - High stability and reproducibility source

Axial density profiles: Thomson scattering EPFLAWARE

Axial density profiles: Thomson scattering EPFLAWAKE

3 m Discharge Plasma Source (DPS) uniformity ± 6%

mm-wave diagnostic on MAP setup

2.5 m Madison AWAKE Prototype (MAP), Phys. Plasmas 32, 093507 (2025)

105 GHz heterodyne interferometer setup

mm-wave diagnostic on MAP setup

Madison AWAKE Prototype (MAP), Phys. Plasmas 32, 093507 (2025)

time since trigger [ms] 500 550 600 650 700 750 800 850 900 $5.17 \mu s$ time res. 1.5 $[10^{19} \, \mathrm{m}^{-3}]$ 100 μs average 1.0 0.5 $\overline{n_e}$ 0.0 1.55 1.5 $[10^{19} \, \mathrm{m}^{-3}]$ 1.0 0.5 10-90% اءِ 1.45 ا 1.45 $n_{\rm e}$ $1.0 \cdot 10^{17} \text{ m}^{-3} \text{ noise}$ in 2.0 ms 567 568 569 570 650 670 680 690 660 time [ms] time [ms]

Density evolution over a 1.3 kW / 200 ms RF pulse (single antenna) ~ 0.7% noise level in steady state

Courtesy of Marcel Granetzny, Univ. Wisconsin

→ Rev. Sci. Instrum. 96, 093510 (2025)

Plasma emission spectroscopy

Plasma Emission Spectroscopy

Plasma emission spectroscopy

Plasma Emission Spectroscopy

Uniformity Measurements

Wavelength (Angstroms)

 Claudia Cobo
 c.cobo@imperial.ac.uk
 12
 25th March 2025

Towards scalability: DPS

- From 3 m unit plasma to 12 m plasma at CERN:
 - x4 duplicate the well characterized 3 m source
 - Use existing shared cathodes and anodes
 - Use two sets of pulsed generators to power two twin plasmas
 - With current balancing modules in between to equalize currents

Towards scalability: DPS

- From 3 m unit plasma to 12 m plasma at CERN:
 - x4 duplicate the well characterized 3 m source
 - Use existing shared cathodes and anodes
 - Use two sets of pulsed generators to power two twin plasmas
 - With current balancing modules in between to equalize currents

→ Planned for end 2025

4x

Towards scalability: DPS

New current balancing modules (CBM)
 designed by IST → magnetic chokes

 Assess the current balance using current and voltages probes

 In a second stage install plasma diagnostics (mm-wave, OES...) to assess plasma uniformity

plasma 1

anode 1 + pump/injection

Towards scalability: HPS

- Implement all the learnings from institutes/CERN R&D:
 - Design and build a ~ 2.5 m unit module with ~ 10 antennas at CERN
 - With optimal tube diameter and antenna shape/spacing (inputs from Univ. Wisconsin/EPFL)
 - Procurement of RF-generators/matchboxes with frequency tuning for fast ignition, short pulses and stability/reproducibility
 - RF/plasma-coupling diagnostics
 - Install plasma monitoring diagnostics (mm-wave, OES...)

→ Planned for 2026/2027

Summary

- Dedicated scalable plasma source R&D program focused on helicon and discharge plasma sources
- Collaborative effort with institutes to develop diagnostics and combine them to characterize the plasma
- Axial density profile on 1 m HPS: +/- 11% uniformity and 3 m DPS: +/- 6% uniformity → reaching the limits of diagnostic!
- MAP HPS transversely average density measured by mm-wave with 0.7% noise level
- Scalability tests to be gradually implemented starting with 12 m DPS by the end of 2025

Summary

- Dedicated scalable plasma source R&D program focused on helicon and discharge plasma sources
- Collaborative effort with institutes to develop diagnostics and combine them to characterize the plasma
- Axial density profile on 1 m HPS: +/- 11% uniformity and 3 m DPS: +/- 6% uniformity → reaching the limits of diagnostic!
- MAP HPS transversely average density measured by mm-wave with 0.7% noise level
- Scalability tests to be gradually implemented starting with 12 m DPS by the end of 2025

2024-2026 PhDs:

- 2 PhDs at University of Madison: Marcel Granetzny (May 2024) and Michael Zepp (October 2024)
- 2 PhD at IST/CERN: Nuno Torrado (July 2025) and Carolina Amoedo (due by end of 2025)
- 1 PhD at EPFL-SPC: Renat Karimov (due by begin/mid-2026)