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AWAKE plasma sources

ATWAKE—

* 2029, after LS3 for HL-LHC preparation > AWAKE Run 2c
* Goals: external injection of e- witness beam, preserved beam quality and acceleration
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- E. Gschwendtner presentation (current talk in Biodola)



https://agenda.infn.it/event/46259/contributions/270203/

AWAKE plasma sources MRS

2029, after LS3 for HL-LHC preparation > AWAKE Run 2c

Goals: external injection of e- witness beam, preserved beam quality and acceleration
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— S. Doebert presentation and E. Belli presentation (Monday session)
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AWAKE plasma sources

ATWAKE—

2029, after LS3 for HL-LHC preparation > AWAKE Run 2c
Goals: external injection of e- witness beam, preserved beam quality and acceleration
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- Second electron source + dedicated injection region

- Separate self-modulation from acceleration: two dedicated plasma sources
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AWAKE plasma sources AR

* 2029, after LS3 for HL-LHC preparation > AWAKE Run 2c
- Two plasma sources: laser ionized Rb vapor
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Modulator plasma source:

* Laser/e- Seeded Self Modulation (SSM) of proton bunch

Electron

* Density step to preserve wakefield amplitude along the plasma spectrometer

Accelerator plasma source:

* High uniformity to preserve phase stability Laser
Imaging
* Dedicated to witness e- beam acceleration station 2

- M. Bergamaschi presentation (previous talk) 6
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AWAKE plasma sources AVARES

- What’s next: scalability, towards AWAKE Run 2d
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* Laser field ionization of Rb vapor limited in length Foa
* Develop a scalable plasma source to avoid stagging S~
* Andtoreach higher energies: E >10 GeV, 10+m

- Dedicated R&D on scalable plasma source to be ready for experiments in 2030s




Scalable plasma source R&D
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today

R&D towards AWAKE Run 2d:
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- Helicon Plasma Source (HPS): RF-wave heated plasma 2024 2073 2026 2027 2028

- Discharge Plasma Source (DPS): pulsed DC discharge >)
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Challenge: achieve 0.25% plasma uniformity at n, = 7x10%* cm3
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—> focus on plasma diagnostics and source design optimization

Work in parallel on scalability and tunability:
*  For HPS: stacking RF-antenna/generators/coils = large investment
* For DPS: stacking sources = challenging source design and electrical circuit

CERN plasma source lab




Scalable plasma source R&D

ATWAKE—
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R&D towards AWAKE Run 2d:
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Challenge: achieve 0.25% plasma uniformity at n, = 7x10%* cm3

—> focus on plasma diagnostics and source design optimization

Work in parallel on scalability and tunability:
*  For HPS: stacking RF-antenna/generators/coils = large investment
* For DPS: stacking sources = challenging source design and electrical circuit

Milestones:

May 2023 run: 10 m DPS in AWAKE - SMI with DPS/ion motion/filamentation/...

End 2024/begin 2025: first density uniformity profile with 1 m HPS and 3 m DPS
End 2025: Internal review whether scalable technology can already be used for Run 2c

~ 2028: Scalable Plasma Source review and decision for Run 2d scalable source

10 m DPS in AWAKE tunnel
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Scalable source technologies AR

Helicon Plasma Source (HPS)
- RF wave heated plasma, pulsed 10 Hz rep. rate

Discharge Plasma Source (DPS)
— pulsed-DC discharge, 1 Hz rep. rate
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10 m DPS in AWAKE tunnel

Low frequency EM waves along B-field Pulsed high voltage discharge

+ Intrinsically length scalable + Relatively simple setup, very flexible, density scalable

- Complex physics, requires B-field, density

- Length scalability, homogeneity
challenging, homogeneity

B Buttenschon et al 2018 Plasma Phys. Control. Fusion 60 075005
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https://iopscience.iop.org/article/10.1088/1361-6587/aac13a
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Collaborative effort R&D AVARES

* Thomson scattering, IR and millimetre wave interferometry on HPS and DPS - EPFL, MPP and CERN E P F L

* Axial density profile along the sources with TS: 2024 Plasma Phys. Control. Fusion 66 115011

* Validation of mm-wave technique across the plasma tube on both sources with 100 GHz heterodyne setup = developing a 350-400 GHz setup MAX PLANCK INSTITUTE
FOR PLASMA PHYSICS

* Transverse IR interferometry on HPS and longitudinal interferometry on DPS

11
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Collaborative effort R&D AVARES

* Thomson scattering, IR and millimetre wave interferometry on HPS and DPS - EPFL, MPP and CERN E P F L CERN

* Axial density profile along the sources with TS: 2024 Plasma Phys. Control. Fusion 66 115011

* Validation of mm-wave technique across the plasma tube on both sources with 100 GHz heterodyne setup - developing a 350-400 GHz setup MAX PLANCK INSTITUTE \
FOR PLASMA PHYSICS g

* Transverse IR interferometry on HPS and longitudinal interferometry on DPS

* Laser induced fluorescence, millimetre wave and RF modelling on MAP HPS = University of Wisconsin

* Transverse line average and time resolved density measurements: arXiv:2503.11009

College of Engineering

y UNIVERSITY OF WISCONSIN-MADISON

* Assessment of plasma directionality as a function of B-field and antenna direction: Phys. Plasmas 30, 120701 (2023)

*  MAP setup, effect of gas flow and plasma directionality, density scaling with RF power: Phys. Plasmas 32, 093507 (2025)

*  COMSOL model to define a simple relation between antenna shape and core density: arXiv:2502.02733
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Collaborative effort R&D AR

* Thomson scattering, IR and millimetre wave interferometry on HPS and DPS - EPFL, MPP and CERN E P F L

* Axial density profile along the sources with TS: 2024 Plasma Phys. Control. Fusion 66 115011

* Validation of mm-wave technique across the plasma tube on both sources with 100 GHz heterodyne setup = developing a 350-400 GHz setup MAX PLANCK INSTITUTE
FOR PLASMA PHYSICS

* Transverse IR interferometry on HPS and longitudinal interferometry on DPS

* Laser induced fluorescence, millimetre wave and RF modelling on MAP HPS = University of Wisconsin

* Transverse line average and time resolved density measurements: arXiv:2503.11009

College of Engineering

y UNIVERSITY OF WISCONSIN-MADISON

* Assessment of plasma directionality as a function of B-field and antenna direction: Phys. Plasmas 30, 120701 (2023)

*  MAP setup, effect of gas flow and plasma directionality, density scaling with RF power: Phys. Plasmas 32, 093507 (2025)

*  COMSOL model to define a simple relation between antenna shape and core density: arXiv:2502.02733

* Longitudinal (2D) + transverse interferometry and optical emission spectroscopy on DPS = Imperial college Imperial College

London
* Spectroscopy over 1 m long plasma to assess spectral emission longitudinal uniformity and potentially derive Te and ne from line ratio

* Time resolved radial profile (averaged over length) of plasma density: radial plasma dynamic

* Development of a transverse multi-pass interferometry in parallel to the longitudinal one

13
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Collaborative effort R&D AR

* Thomson scattering, IR and millimetre wave interferometry on HPS and DPS - EPFL, MPP and CERN E P F L CERN

* Axial density profile along the sources with TS: 2024 Plasma Phys. Control. Fusion 66 115011

* Validation of mm-wave technique across the plasma tube on both sources with 100 GHz heterodyne setup = developing a 350-400 GHz setup MAX PLANCK INSTITUTE
FOR PLASMA PHYSICS

* Transverse IR interferometry on HPS and longitudinal interferometry on DPS

* Laser induced fluorescence, millimetre wave and RF modelling on MAP HPS = University of Wisconsin

* Transverse line average and time resolved density measurements: arXiv:2503.11009 Co”ege of Engineering

.“é ) UNIVERSITY OF WISCONSIN-MADISON

* Assessment of plasma directionality as a function of B-field and antenna direction: Phys. Plasmas 30, 120701 (2023)

*  MAP setup, effect of gas flow and plasma directionality, density scaling with RF power: Phys. Plasmas 32, 093507 (2025)

*  COMSOL model to define a simple relation between antenna shape and core density: arXiv:2502.02733

* Longitudinal (2D) + transverse interferometry and optical emission spectroscopy on DPS = Imperial college Imperial College
London
* Spectroscopy over 1 m long plasma to assess spectral emission longitudinal uniformity and potentially derive Te and ne from line ratio

* Time resolved radial profile (averaged over length) of plasma density: radial plasma dynamic

* Development of a transverse multi-pass interferometry in parallel to the longitudinal one

TECNICO
* longitudinal interferometry and stability studies on DPS, source design = IST Lisbon LISBOA

* Pulsed-DC generator development and current balancing scheme in view of scalability test

e High stability and reproducibility source
14
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Axial density profiles: Thomson scattering EPFL >

3 m Discharge Plasma Source (DPS)

uniformity + 6%

Plasma density DPS 3m, Ar 24 Pa, 400 A

—&— Plasma density, as measured by TS along z
—— mean plasma density

—— —-mean + 6%

9r = = = -mean - 6%

1 m Helicon Plasma Source (HPS)

uniformity + <11 %

=
5 x10% z
I I I helical §
W I XX _ ¥ % T | ring g
. % o - g X & X2 % 2
g2 J! *X—Xx I*;.i. fx*le % 8
> ¥0
B >I< ‘|,I< X I I
gl | I |
A
0 I | Antenna!lpcations | I
100 200 300 400 500 600 700 ) . Courtesy of Carolina Amoedo, CERN/IST
z-Position (mm) 0 500 1000 1500 2000 2500 3000

Courtesy Of Renat Karimov, EPFL-SPC Position (mm) [0 = Anode, 3000 = Cathode]

— Reaching the limits of TS diagnostic capability! 15



Axial density profiles: Thomson scattering EPFL ">

3 m Discharge Plasma Source (DPS)

uniformity + 6%

1 m Helicon Plasma Source (HPS)

uniformity + <11 %

- Reaching the limits of TS diagnostic capability! - C. Amoedo’s poster (Tuesday session)
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mm-wave diagnostic on MAP setup
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AWAKE Prototype (MAP), Phys. Plasmas 32, 093507 (2025)
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mm-wave diagnhostic on MAP setup
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Madison AWAKE Prototype (MAP), Phys. Plasmas 32, 093507 (2025) Density evolution over a 1.3 kW / 200 ms RF pulse (single antenna)

~ 0.7% noise level in steady state

Courtesy of Marcel Granetzny, Univ. Wisconsin
- Rev. Sci. Instrum. 96, 093510 (2025)
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Imperial College

Plasma emission spectroscopy Lobeon Ie9¢ AVAKE

Plasma Emission Spectroscopy

1 |

Calibration with mercury
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< 2nm spectral resolution
~10 cm spatial resolution

Bentham M300 Czerny-Turner
spectrometer used to measure
spectrum over 1 m tube

f=16mm

Spectrometer

b

CMOS
camera

Claudia Cobo c.cobo@imperial.ac.uk
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Plasma emission spectroscopy

Imperial College

London ATWAHEE

Plasma Emission Spectroscopy

Uniformity Measurements
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Towards scalability: DPS ) TR0 s

* From 3 m unit plasma to 12 m plasma at CERN:

GND f': ll\

x4 duplicate the well characterized 3 m source
cathode

3 m unit plasma

7

Use existing shared cathodes and anodes

Use two sets of pulsed generators to power two twin plasmas

With current balancing modules in between to equalize currents

- Planned for end 2025

21



Towards scalability: DPS Q) e >

* From 3 m unit plasma to 12 m plasma at CERN:

—
- x4 duplicate the well characterized 3 m source GND.f_ \
cathode

3 m unit plasma

7

- Use existing shared cathodes and anodes

- Use two sets of pulsed generators to power two twin plasmas

- With current balancing modules in between to equalize currents

- Planned for end 2025

double/common

anode 1 + pump/injection anode
plasma 2 \ plasma 4 \

double cathode 1 12 m double cathode 2 -

N



Towards scalablllty DPS U >

* New current balancing modules (CBM)

designed by IST - magnetic chokes

- Assess the current balance using current
and voltages probes

- In a second stage install plasma
diagnostics (mm-wave, OES...) to assess

plasma uniformity

double/common
anode 1 + pump/injection anode anode 2
\ plasma 2 \ plasma 4 \
_ y p AN =

double cathode 1 12 m double cathode 2

\

N
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Towards scalability: HPS AVARES

* Implement all the learnings from institutes/CERN R&D:
- Design and build a ~ 2.5 m unit module with ~ 10 antennas at CERN

- With optimal tube diameter and antenna shape/spacing (inputs from

Univ. Wisconsin/EPFL)

- Procurement of RF-generators/matchboxes with frequency tuning for

fast ignition, short pulses and stability/reproducibility
- RF/plasma-coupling diagnostics

- Install plasma monitoring diagnostics (mm-wave, OES...)

- Planned for 2026/2027

adapted from O. Grulke IPP-Greifswald
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Summa ry ATVAKE

Dedicated scalable plasma source R&D program focused on helicon and discharge plasma sources

Collaborative effort with institutes to develop diagnostics and combine them to characterize the plasma

Axial density profile on 1 m HPS: +/- 11% uniformity and 3 m DPS: +/- 6% uniformity = reaching the limits of diagnostic!
MAP HPS transversely average density measured by mm-wave with 0.7% noise level

Scalability tests to be gradually implemented starting with 12 m DPS by the end of 2025

25



Summa ry ATVAKE

* Dedicated scalable plasma source R&D program focused on helicon and discharge plasma sources

* Collaborative effort with institutes to develop diagnostics and combine them to characterize the plasma

 Axial density profile on 1 m HPS: +/- 11% uniformity and 3 m DPS: +/- 6% uniformity = reaching the limits of diagnostic!
* MAP HPS transversely average density measured by mm-wave with 0.7% noise level

* Scalability tests to be gradually implemented starting with 12 m DPS by the end of 2025

2024-2026 PhDs:

* 2 PhDs at University of Madison: Marcel Granetzny (May 2024) and Michael Zepp (October 2024)
* 2 PhD at IST/CERN: Nuno Torrado (July 2025) and Carolina Amoedo (due by end of 2025)
* 1 PhD at EPFL-SPC: Renat Karimov (due by begin/mid-2026)
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