Development of an Electro-Optic Sampling Beam-Position Monitor (EOS-BPM) at FACET-II

Claire Hansel^{1,2,*}, Elena Ros¹, Daniel Matteo³, Alexander Knetsch², Tara Hodgetts³, Brendan O'Shea², Doug Storey², Mark Hogan², Gerard Andonian³, Loic Amoudry³, Nathan Majernik², Michael Litos¹

¹University of Colorado Boulder

²SLAC National Accelerator Laboratory

³Radiabeam Technologies LLC

*chansel@slac.stanford.edu

Motivation

- Advanced accelerators need advanced diagnostics!
- Emittance preservation and energy spread minimization in PWFAs requires measurement and control of transverse offsets and longitudinal separation between bunches.
- There is a particular need for a **high** resolution, non-destructive and single shot diagnostic that can measure where (x, y, ζ) and when (t) the drive and witness bunches are.

Spacially Encoded EOS

- As an electron bunch passes by, an electro-optic (EO) crystal sees its spacecharge field as a half cycle THz pulse.
- This electric field induces a birefringence in the EO crystal.
- An ultrafast laser pulse passing through the crystal at the same time picks up a spacially encoded polarization rotation.

Spacially Encoded EOS

Image on camera

Figure: Elena Ros

- Polarizer converts spacially varying polarization to spacially varying intensity which is imaged.
- \bullet Projecting 2D image onto the x (time) axis gives the time resolved EOS signal.
- EOS signal depends on bunch current and distance from the crystal.
- \bullet Crystal acts as a low pass filter for the current density, doesn't capture longitudinal variation in the current on lengthscales less than a few 10s of μ m.

Spacial Dependence

• Comparing the strength of the EOS signal on two crystals on either side of the electron bunch allows the effects of current and distance to be separated

$$x \propto \frac{S_1 - S_2}{S_1 + S_2}$$

S₁:EOS1 Signal Strength

S₂:EOS2 Signal Strength

EOS-BPM Mk. 1

- Prototype installed at FACET-II.
- Two 100µm Gallium Phosphide (GaP) Crystals
- Can only act as a BPM in one transverse dimension.
- PID feedback was implemented to adjust the laser digital delay and keep the signal in the middle of the crystal despite long term machine drifts.

Data Analysis

Results — Stage Position

 $\sigma(x_{\text{EOS-BPM}} - x_{\text{Stage,OTR}}) = 73.1 \mu \text{m}$ (No Laser Intensity Correction) = $69.0\mu m$ (Laser Intensity Correction)

- Entire EOS-BPM assembly rests on a translation stage which we scanned the transverse position of.
- Accelerator optics were configured to image beam at EOS-BPM to a downstream OTR foil. Stage position and beam x position on OTR foil were used to get the 'true' x position at the EOS-BPM instrument.
- x position predicted from EOS-BPM was determined using the equation
- Constants c_1, c_2, c_3 were chosen via a Nelder-Mead optimization to minimize the difference between the 'true' x position and the EOS-BPM prediction.

Results — Corrector Dipole

 $\sigma(x_{\text{EOS-BPM}} - x_{\text{Stage,OTR}}) = 84.0 \mu \text{m}$ (No Laser Intensity Correction) = $66.6\mu m$ (Laser Intensity Correction)

- Field of a corrector dipole upstream of **EOS-BPM** was scanned
- Similar results when using OTR foil and conventional BPMs to determine 'true' position

Summary of Mk. 1 Results

1. First demonstration of transverse beam position measurement by an EOS-BPM

2. Relatively poor resolution of $70\mu m$ (before focusing into a plasma)

3. What is the leading cause this error?

EOS-BPM Mk. 2 Design

- Four crystals allow BPM functionality in both transverse dimensions.
- Axion creates circular 'donut' laser profile.
- Improved signal to noise over Mk. 1 Prototype leads to higher resolution

EOS-BPM Mk. 2 CAD Models

EOS-BPM Mk. 2 Simulations

Parameter	Value	Unit
Laser Wavelength	800	nm
Laser Angle	5	degree
GaP Wafer Thickness	100	μm
Drive Beam Charge	1000	pC
Witness Beam Charge	800	pC
Time Delay btw. Beams	450/135	fs/µm
Transverse Beam Offset Drive	~10	μm
Transverse Beam Offset Witness	~10	μm
Bunch Length (Both)	50/15	fs/µm

EOS-BPM Mk. 2 Simulations

3 fs relative TOA resolution

<5 µm transverse resolution

Slide: Elena Ros

EOS-BPM Mk. 2 Status

Donut laser profile from EOS-BPM Mk. 2

- Prototype assembled and tested at CU
- Will be installed and commissioned at FACET-II this fall

EOS-BPM Mk.2 assembled at CU

Questions?

This work is supported by the National Science Foundation through grant PHY-1806053 and PHY-2047083, and by the US Department of Energy through grant DE-SC0017906 and DE-SC0023977. SLAC National Accelerator Laboratory is operated by Stanford University for the US Department of Energy

Calibration

Jitter

DTOTR2-BPM Correlation

$$\sigma(x_{\text{DTOTR2}} - x_{\text{BPM}}) = 20.0 \mu \text{m}$$

Stage Scan-Intensity Correction Off

Stage Scan-Intensity Correction On

XCORR Scan—Intensity Correction On DTOTR2

XCORR Scan—Intensity Correction On BPMs

XCORR Scan—Intensity Correction On BPMs

	Intensity Correction Off	Intensity Correction On
Stage	73.1 um	69.0 um
XCORR BPM	86.2 um	69.8 um
XCORR DTOTR2	84 um	66.6 um