

Advanced Beam Diagnostics with PolariX TDS: Experimental 5D Reconstruction at SwissFEL

<u>Francesco Demurtas</u>^a, E. Chiadroni^{a d}, P. Craievich^b, P. Dijkstal^b, E. Ericson^b, A. Giribono^d, R. Ischebeck^b, S. Jaster-Merz^c, F. Marcellini^b, E. Prat^b, S. Reiche^b

^aSapienza University of Rome, Roma, Italy
^bPaul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
^cDeutsches Elektronen-Synchrotron DESY, Hamburg, Germany
^dIstituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati, Frascati, Italy

Talk outline

- 1. Motivations and goals of the presented experimental activities
- 2. Description of the Polarizable X-Band Transverse Deflection Structure system
- 3. Description of the **3D and 5D tomographic techniques**
- 4. Preparations of the **experimental setup:**
 - Athos SwissFEL diagnostics beamline
 - Beam optics calculation
 - PolariX TDS multiple streaking
 - Deflector calibration
- 5. Experimental results of the 3D and 5D reconstruction
- 6. Summary and conclusions

Motivations and goals

> The presented experimental activity is a result from a collaboration between PSI center, DESY and INFN-LNF

Development of the PolariX TDS

Development and first demonstration of the tomographic reconstruction method

➤ PolariX TDS implementation into the diagnostic system

Necessity:

- High longitudinal resolution $\sim fs \Rightarrow$ PolariX TDS
- Full phase-space reconstruction ⇒ Tomographic techniques (3D/5D reconstruction)

➢ Goal:

Demonstrate feasibility of 3D/5D reconstructions

PolariX TDS: RF system

➤ The **PolariX** is an X-band Transverse Deflection Structure with the feature of changing the beam streaking direction

- The power is split into two branches
- The phase shifter introduces a phase difference between ports 1 and 2:
 - 0 deg -> vertical polarization
 - 180 deg -> horizontal polarization
- The two branches are then recombined into the E-rotator

PolariX TDS: Working principle

- > It is capable of measuring the longitudinal properties of the beam in both transverse planes with fs-resolution
- Allows for a tomography of the beam to reconstruct the 3D (x,y,t) and 5D (x,x',y,y',t) beam distribution, by streaking the beam for different field polarizations

PolariX TDS: Tomographic reconstruction

- > Combination of two scans:
 - Quadrupole scan → change optics, vary transverse phase advance
 - **PolariX TDS scan** \rightarrow streaking at 10 polarization angles ($\sim 180 \ deg$ coverage)
- > For each quadrupole setting:
 - Acquire 10 streaked images
 - Each image is divided into longitudinal slices
- > 3D Reconstruction
 - Each slice (1D in time) + 10 projections → tomographic 2D reconstruction (x-y)
 - Stacking slices → 3D charge distribution (x, y, t)

<u>Ref.</u>: Marx, Daniel, et al. "Reconstruction of the 3D charge distribution of an electron bunch using a novel variable-polarization transverse deflecting structure (TDS)." Journal of Physics: Conference Series. Vol. 874. No. 1. IOP Publishing, 2017.

PolariX TDS: 5D tomography

> 4D Reconstruction

 2D slice images interpreted as projections of full 4D phase space (x, x', y, y') rotated by an angle depending on the phase advance

$$I(x,y) = \int \int f_b(x,x',y,y') dx' dy'$$

$$\mu_x \Rightarrow \begin{pmatrix} x_1 \\ x_1' \end{pmatrix} = \begin{pmatrix} \cos(\theta_x) & -\sin(\theta_x) \\ \sin(\theta_x) & \cos(\theta_x) \end{pmatrix} \begin{pmatrix} x \\ x' \end{pmatrix} \Rightarrow I_y(x_1,\theta_x)$$

- $I_{\mathcal{V}}(x_1, \theta_{\mathcal{X}})$ is the projection along the $\theta_{\mathcal{X}}$ direction in the horizontal phase space
- Filtered back-projection algorithm recovers transverse momenta x', y'

$$I_{y,\theta_x}(x)$$
 1° iteration 2° iteration $f(x,x',y,y')$

> 5D Reconstruction

- Combine transverse phase space slices (4D) with longitudinal coordinate (t)
- Result: full 5D beam distribution
- Developed and demonstrated for the first time at DESY.

<u>Ref.</u>: Hock, K. M., and A. Wolski. "Tomographic reconstruction of the full 4D transverse phase space." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 726 (2013): 8-16.

5D Reconstruction: Beamline layout

- Quadrupoles off after the TDS ⇒ Resolution depending on the TDS-screen distance, TDS parameters, and unstreaked beam transverse size at the screen
- System of 3 Phase Shifters needed for polarization selection and opposite kick compensation
- Two different beam configurations with different bunch length

Beam and TDS parameters	
Charge	200 <i>pC</i>
Energy	3.4 G <i>eV</i>
TDS length	1.2 <i>m</i>
Klystron power	28 <i>MW</i>
TDS Voltage	70 <i>MV</i>
TDS calibration	$16.5 \mu m/fs$

5D Reconstruction: Optics simulations

Single-particle simulations have been done to calculate the beam optics for the quadrupole scan

5D Reconstruction: TDS polarizations

- The beam is streaked, covering a polarization range of 180 degrees, and from the centroids, the streaking angle can be evaluated
- The polarization is set by three phase shifters that set the single cavity phase and the relative one

Beam Images at different polarizations

$$\theta = \tan^{-1}(\frac{C_y}{C_x})$$

Polarization [deg]	Measured Angle [deg]
0	2.3 ± 0.3
18	19.6 ± 0.3
36	37.9 ± 0.2
54	56.6 ± 0.5
72	74.7 ± 0.5
90	92.9 ± 0.2
108	111.4 ± 0.4
126	130.1 ± 0.2
144	148.2 ± 0.3
162	165.2 ± 0.5

Angle from: Centroid Shift vs RF Phase

5D Reconstruction: Calibration results

- TDS calibration for different streaking angles → Measured the centroid shift when changing the cavity phase
- Expecting a low variation in the calibration factors depending on the streaking angle, due to not using quadrupoles after the TDS
- Average resolution rescaled to take into account shot-to-shot variations in the cavity voltage

3D Reconstruction: 2D projections

- For each dataset, we acquired 5 images for each combination of 100 quadrupole settings and 10 polarizations (Beam repetition rate: 1 Hz)
- > For each beam optics the 3D reconstruction can be performed

2D projections from the reconstructed 3D distribution ($\mu_{\chi}=\mu_{\gamma}=96~deg$):

5D Reconstruction: Preliminary results

• The measurement has been done in two settings: a short bunch ($\sigma_t \sim 19 \ fs$) and a less compressed ($\sigma_t \sim 40 \ fs$) to mitigate collective effects in the compressor and reduce the beam tilt

3D beam charge density obtained as a projection of the reconstructed 5D distribution:

5D Reconstruction: Bunch 1

> Bunch 1, reconstructed 2D projections:

> In the first beam configuration, the high compression produces a very short bunch with an evident tilt in the (x,t) plane

 $x'_N [mm/\sqrt{m}]$

 $y'_N [mm/\sqrt{m}]$

5D Reconstruction: Bunch 2

> In the second beam configuration, the relaxation of the bunch compression reduces the beam tilt

Summary and conclusions

> Summary results

- Employed the 3D and 5D tomography at the 3 GeV Athos beamline at SwissFEL, to reconstruct beams for two different beam configurations
- Achieved the 5D tomography with $\sim fs \ Resolution$

> Next Studies:

- Employ this technique as diagnostics to characterize the nominal bunch at Athos SwissFEL
- Extend the 5D tomography method to perform the 6D Reconstruction, including the beam energy measurement at the spectrometer

Acknowledgements

• INFN-LNF: E. Chiadroni, A. Giribono

• **PSI center:** P. Craievich, P. Dijkstal, F. Marcellini, E. Prat, S. Reiche, E. Ericson, R. Ischebeck

• **DESY:** S. Jaster-Merz, B. Beutner

Thank you for your attention

BACKUP SLIDES

SART tomographic algorithm

> SART (Simultaneous algebraic reconstruction technique) TOMOGRAPHIC ALGORITHM

Working principle:

- 1. Sinogram: set of 1S projections D_i (called ray) in input to the algorithm
- 2. Initial guess $I_0(x, y)$ to calculate the projection $D_{0j} = R_j I_0(x, y)$
- 3. Calculated the projection D_{0j} we define the difference between D_j and D_{0j} and update the initial guess $I_0(x,y)$ to reduce the difference at each iteration

Advantages:

- It is simultaneous because it updates all pixels at the same time
- More accurate and robust than other similar algorithms
- Good reconstruction with few projection angles

Filtered Back Projection algorithm

> FILTERED BACK PROJECTION TOMOGRAPHIC ALGORITHM

Working principle:

- 1. 2D Projection of 4D distribution $I(x,y) = \int \int f_B(x,x',y,y') dx' dy'$
- 2. $(x, x') \Rightarrow (x_1, x_1')$ after a rotation $\theta_x \Rightarrow I(x_1, y) = P_{y, \theta_x}(x_1)$: Projection
- 3. Consider y as constant, and work only on the x,x' variables
- 4. Apply Fourier transform to P: $S_{y,\theta_x}(w) = \int_{-\infty}^{\infty} P_{y,\theta_x}(x_1) e^{-2\pi i w x_1} dx_1$
- 5. Apply high-pass filter and revert the transform: $Q_{y,\theta_x}(x_1) = \int_{-\infty}^{\infty} S_{y,\theta_x}(w) |w| e^{2\pi i w x_1} dw$
- 6. Compute the back-projection: $g_{y}\left(x,x'\right)=\int_{-\pi}^{\pi}Q_{y,\theta_{x}}\left(x_{1}\right)d\theta_{x}$
- 7. Repeating the same process for y gives the 4D distribution

Beamline optics

- The optics has been calculated to match the Twiss parameters to screen
- Since there are no quadrupoles active, but only a drift after the TDS, the beta function at the TDS center and the beam size at the screen are dependent parameters

Image treating methodology

- > The images have to be prepared to perform the tomographic reconstruction:
 - 1. Remove background and apply gaussian filters to the images
 - 2. Rescale images to have square pixels
 - 3. Rotate the images by the streaking angle
 - 4. Apply the calibration factor to the streaking axis and rescale the images to have the same temporal scale
 - 5. Center the images
 - 6. Set the ROI to select only the beam
- > This allows for the reconstruction, minimizing the artifacts that can arise from the disalignment in the images and from background contributions

EuPRAXIA@SPARC LAB

Two PolariX TDS will be implemented in the EuPRAXIA@SPARC_LAB diagnostics systems

