

A Roadmap Towards Direct Imaging of Plasma Targets Using Computational X-Ray Holography Imaging

Ritz Ann Aguilar¹, Long Yang¹, Yangzhe Cui¹, Arie Irman¹, Maxwell LaBerge¹, Alex Debus¹, Michael Bussmann^{1,2}, Jeffrey Kelling^{1,3}, Martin Rehwald¹, Toma Toncian¹, Karl Zeil¹, Ulrich Schramm^{1,5}, Thomas Cowan^{1,3},

¹Helmholtz-Zentrum Dresden-Rossendorf, Germany, ²CASUS, Görlitz, Germany, ³Technische Universität Chemnitz, Germany, ⁴Technische Universität Dresden, Germany

7th European Advanced Accelerator Conference

Sep 21 – 27, 2025

Hotel Hermitage, La Biodola Bay, Isola d'Elba, Italy

Laser-Plasma Accelerator-Driven Free Electron Laser

Goal: Find the optimal input parameters to produce desired radiation.

Challenges: large parameter space, indirect measurement modalities, cost of experiments/simulations

Labat, M., Nat. Photon. 17, 150–156 (2023).

Inverse Problems in Photon Science

Understanding the plasma dynamics

diffraction patterns

phase maps, structure factor

Measuring material interface properties

reflectivity
curves
↓
material
properties

transition radiation images ↓ electron

 $\approx \Re^{-1}$

Characterizing laser-plasma accelerators

LaBerge et al., Nat. Photon. 18, 952–959 (2024)

HELMHOLTZ AI

bunch

Physics-informed Machine Learning + Data-Driven Approaches

A general overview

HELMHOLTZ AI

Use Case: Computational X-Ray Holography/Phase-Contrast Imaging

Physical forward model: Fresnel free-space propagator

$$\mathcal{D}_{\mathrm{Fr}}(\Psi) = \mathcal{F}^{-1} \left\{ \exp\left((-i\pi)/(2 \,\mathrm{Fr})(\varepsilon^2 + \eta^2)\right) \mathcal{F}[\Psi] \right\}$$

Ψ: complex wavefield (Ψ = Aexp(iφ)) ε , η : inverse space coordinates

Fr: Fresnel number (Fr = $\Delta x^2/\lambda z$)

 Δx : detector pixel size λ : source wavelength

z: propagation distance

propagator easily replaceable

Sample physics-informed machine learning framework:

- Target is the Compound Refractive Lens (CRL)
- Network reconstructs the phase and amplitude of the CRL

Physics-informed Machine Learning + Data-Driven Approaches

Use Case: Multiwavelength Coherent Optical Transition Radiation (COTR)

LaBerge et al., Nat. Photon. 18, 952–959 (2024)

Normalizing flow model: a probabilistic generative model

Training

Input x: decomposed by a Haar wavelet transform.

Coupling layers learn the conditional distribution of the details.

Hologram: conditional input from which features are extracted from.

Model is trained on **bits-per-dimension**(BPD):

Negative log-likelihood:

$$BPD = \frac{-\log \mathcal{L}(\theta)}{H \cdot W \cdot C \cdot \log 2}$$

 $\mathcal{L}(\theta) = p_{\theta}(x|c)$ θ : model parameters H, W, C: height, width, channel

Has tractable density estimation.

Sampling

To reconstruct images with the trained model, **the "flow"** is simply reversed (from z to x).

The path of the hologram is the same.

Training path of Conditional Wavelet Flow (cWF).

Ground Truth (Absorption)

Now a PhD student @ TU Delft

Hologram c

Backbone

Coupling Layers

Coupling Layers

Coupling Layers

HZDR (2023).

Sampling path of cWF.

Yunfan Zhang, Master's Thesis,

Absorption Phase

-0.998
-0.996
-0.994
-0.992

Sample Simulations

Hologram

HELMHOLTZ AI

Ground Truth (Phase)

Results: Comparison to other models

↑ model capacity and complexity,↑ computational resources and time

U-Net Architecture

Conditional Invertible Neural Network (cINN) Architecture

Tested on different opensource standard datasets used in machine learning: LSUN, COCO, FFHQ

b) Inference time

First Steps: Imaging of a Compressed Hydrogen Jet

Hydrogenic Imaging at Gbar pressures with XFEL

Ongoing Project...

Schematic of XFEL imaging configration for imaging a hydrogen jet.

CRL: compound refractive lens

Simulated Phase Contrast Images at Different Distances

Jet focal spot: 40 microns

Challenge:

- Sampling limits

Simulation Credits:

- Long Yang, HZDR
- Thomas Cowan, HZDR

Differentiable Optical Transition Radiation (OTR) Simulations

Incoherent and coherent OTR (IOTR and COTR) were simulated in a machine learning framework, PyTorch

- Provides backwards-differentiable and GPU-compatible calculations
- Enables fast, inexpensive gradient calculations of simulation outputs

North American Particle Accelerator Conference, August 2025

DEVELOPMENT AND APPLICATIONS OF DIFFERENTIABLE COHERENT OPTICAL TRANSITION RADIATION SIMULATIONS

R. Roussel*, SLAC National Accelerator Laboratory, Menlo Park, CA, USA R. Aguilar, M. LaBerge, F. L. Wu, A. Irman, J. Kelling, U. Schramm, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany M. Downer, Z. Ouyang, The University of Texas at Austin, Austin, TX, USA

Abstract

Optical transition radiation (OTR) beam profile mon-

To address this problem, we have implemented so-called backwards differentiable simulations of incoherent and coherent OTR that can be used to effectively infer transverse

z (µm)

Reconstruction of 6D Phase Space Distributions using Coherent

Optical Transition Radiation (COTR)

North American Particle Accelerator Conference, August 2025

DEVELOPMENT AND APPLICATIONS OF DIFFERENTIABLE COHERENT OPTICAL TRANSITION RADIATION SIMULATIONS

R. Roussel*, SLAC National Accelerator Laboratory, Menlo Park, CA, USA R. Aguilar, M. LaBerge, F. L. Wu, A. Irman, J. Kelling, U. Schramm, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany M. Downer, Z. Ouyang, The University of Texas at Austin, Austin, TX, USA

Abstract

Optical transition radiation (OTR) beam profile monitors are widely used to measure the transverse profiles

To address this problem, we have implemented so-called backwards differentiable simulations of incoherent and coherent OTR that can be used to effectively infer transverse beam properties from beam profile measurements that can

- Assumes beam distribution has full transverse coherence at visible wavelengths and beam size is large enough compared to the wavelength
- The physics is incorporated into the beam dynamics simulation
- Enables reconstruction of the beam phase space distribution using GPSR

Generative Phase Space Reconstruction (GPSR) of a test distribution that emits COTR from an intercepting foil while an upstream quadrupole is scanned

Loos, H., et al. Materials of Proceedings of FEL08. Gyeongju, Korea (2008): 485 R. Roussel, et al. PRL 130.14 (2023): 145001.

Summary and Future Work

TI HELMHOLTZ I⊿ IMAGING

Online diagnostics

 From simulation → beamline experiments

Open-source toolkit

 Share our pipelines with the photon science community

Goal: To develop a unified machine learning framework to solve the inverse problems.

QUESTIONS?

