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Laser-Plasma Accelerator-Driven Free Electron Laser
Goal: Find the optimal input parameters to produce desired radiation. 

Radiation EmissionElectron-Bunch PropagationLaser-Plasma AccelerationHigh-Power Laser

Challenges: large parameter space, indirect measurement modalities, cost of experiments/simulations

7th European Advanced Accelerator Conference, Isola d' Elba, Italy22.09.2025

Labat, M., Nat. Photon. 17, 150–156 (2023). 
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Inverse Problems in Photon Science
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Physics-informed Machine Learning + Data-Driven Approaches
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How do we approximate 𝕽"𝟏?

A general overview
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Use Case: Computational X-Ray Holography/Phase-Contrast Imaging

25.09.255

§ Physical forward model: Fresnel free-space propagator

Ψ: complex wavefield (Ψ = 𝐴exp(𝑖𝜙))
𝜀, 𝜂: inverse space coordinates
Fr: Fresnel number (Fr = ⁄Δ𝑥! 𝜆𝑧)

Δ𝑥: detector pixel size
𝜆: source wavelength
𝑧: propagation distance

𝒟#$ Ψ = ℱ!% exp −𝑖𝜋 / 2 Fr 𝜀& + 𝜂& ℱ Ψ
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Sample physics-informed machine learning 
framework:
- Target is the Compound Refractive Lens (CRL)
- Network reconstructs the phase and amplitude 

of the CRL
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Physics-informed Machine Learning + Data-Driven Approaches
Use Case: Multiwavelength Coherent Optical Transition Radiation (COTR)

LaBerge et al., Nat. Photon. 18, 952–959 (2024)

𝕽!𝟏

𝕽

𝕽

≈ 𝕽"𝟏

?
forward

inverse
Inference time: 

minutes to 
seconds

7th European Advanced Accelerator Conference, Isola d' Elba, Italy22.09.2025



Change slide layout in the menu 

Normalizing flow model: a probabilistic generative model
Training

Input 𝑥: decomposed by a Haar wavelet 
transform.
Coupling layers learn the conditional 
distribution of the details. 
Hologram: conditional input from which 
features are extracted from.
Model is trained on bits-per-dimension 
(BPD):

BPD = ! ()* ℒ '
,⋅.⋅/⋅()* &

Sampling
To reconstruct images with the trained 
model, the “flow” is simply reversed 
(from 𝑧 to 𝑥).
The path of the hologram is the same.

25.09.257

Training path of Conditional Wavelet 
Flow (cWF).

Sampling path of cWF.Negative log-likelihood:
ℒ 𝜃 = 𝑝$ 𝑥|𝑐
𝜃: model parameters
H,	W,	C: height, width, channel

Has tractable density estimation.

Reconstruction Results

Absorption Phase

Sample Simulations

Yunfan Zhang, Master’s Thesis, 
HZDR (2023).
Now a PhD student @ TU Delft
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Results: Comparison to other models
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Model Capacity

Model Complexity

↑ model capacity and complexity, 
↑ computational resources and time

U-Net Architecture

Conditional Invertible Neural Network 
(cINN) Architecture

Tested on 
different open-
source standard 
datasets used in 
machine 
learning:
LSUN, COCO, 
FFHQ

Yunfan Zhang, Master’s Thesis, 
HZDR (2023).
Now a PhD student @ TU Delft
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First Steps: Imaging of a Compressed Hydrogen Jet

22.09.2025 7th European Advanced Accelerator Conference, Isola d' Elba, Italy

Hydrogenic Imaging at Gbar pressures with XFEL

Density Projection Simulated Phase Contrast Images at Different Distances

Schematic of XFEL imaging configration for imaging a hydrogen jet.

XFEL @ 
8.13 keV CRL: compound 

refractive lens

Sample Phase Contrast 
Images at (b) and (e)

Ongoing Project…

Challenge:
- Sampling limits 

Jet focal spot: 
40 microns

Simulation Credits:

- Long Yang, HZDR
- Thomas Cowan, HZDR



Differentiable Optical Transition Radiation (OTR) Simulations
Incoherent and coherent OTR (IOTR and COTR) were simulated in a 
machine learning framework, PyTorch

§ Provides backwards-differentiable and GPU-compatible calculations
§ Enables fast, inexpensive gradient calculations of simulation outputs

Beam 
Distribution 1

Beam 
Distribution 2 Convolution Kernels OTR from Distribution 1

⊛ =

OTR from Distribution 2
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North American Particle Accelerator Conference, August 2025



Change slide layout in the menu 

Reconstruction of 6D Phase Space Distributions using Coherent 
Optical Transition Radiation (COTR)
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North American Particle Accelerator Conference, August 2025

Loos, H., et al. Materials of Proceedings of FEL08. Gyeongju, Korea (2008): 485
R. Roussel, et al. PRL 130.14 (2023): 145001.

• Assumes beam distribution has full transverse 
coherence at visible wavelengths and beam 
size is large enough compared to the 
wavelength

• The physics is incorporated into the beam 
dynamics simulation 

• Enables reconstruction of the beam phase 
space distribution using GPSR

Generative Phase Space Reconstruction (GPSR) of a test distribution that emits 
COTR from an intercepting foil while an upstream quadrupole is scanned



Laser-Plasma Accelerator-Driven 
Free Electron Laser
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Online diagnostics
• From simulation → 

beamline experiments

Open-source toolkit
• Share our pipelines 

with the photon science 
community

Summary and Future Work
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Goal: To develop a 

unified machine 
learning framework to 

solve the inverse 
problems.

QUESTIONS?


