COMPACT BEAMLINE FOR LASER-PLASMA-BASED RADIOTHERAPY

Dr. Jonas Björklund Svensson

Postdoctoral Researcher | Accelerator Physics and FELs
Division of Synchrotron Radiation Research
Department of Physics, Lund University
Lund, Sweden
jonas.bjorklund_svensson@fysik.lu.se

BACKGROUND

- > Laser-plasma-generated particle beams interesting for radiotherapy
 - > High instantaneous dose rate gives access to FLASH effect [1]
 - > Potentially compact treatment facilities

- > Very-high-energy electron (VHEE) bunches gaining interest
 - Not as specific as ions, but better than X-rays [2]

- > Promising application for LPA beams
 - > Not emittance sensitive
 - > Modest energies (100-300 MeV e-)
- Needs dose stability, monitoring, low background radiation

M. G. Ronga, et al., Cancers **13**, 4942 (2021)

BACKGROUND

- > Earlier work: we did an experiment using LPA electrons
- > Quadrupole imaging onto phantom yielded good dose distribution
 - > Point-to-point imaging ensured minimal impact from pointing jitter
 - > Uncontrolled charge loss, large *E*-spread at target
 - > Must be improved for potential clinical use!

200

Energy [MeV]

Energy [MeV]

IMPROVED ELECTRON TRANSPORT

- > Ionization injection typically yields broad, reproducible spectra
- > Part of the spectrum could be extracted in a controlled way
 - > Safely dump unusable charge, facilitate further transport
 - > Minimizes charge fluctuation at target
 - > Enables raster scanning

IMPROVED ELECTRON TRANSPORT: CONCEPT

- > Utilize imaging with combined plasma- and magnetic-optic transport
 - > Image electron source onto collimator using active plasma lens (APL)
 - > Magnification >1
 - > Minimize position jitter on collimator
 - > Place collimator inside dispersive section, select same energy as APL imaging

MPROVED ELECTRON TRANSPORT: CONCEPT

- > Effectively two mirrored imaging spectrometers
 - > Collimator instead of screen
 - > Part of the concept experimentally demonstrated

S. K. Barber et al., Appl. Phys. Lett. 116, (2020)

SIMULATION RESULTS

- > Simplest extension of setup from K. Svendsen et al. (2021)
- $> M_1 = 5$, $M_2 = 1$; D = 41 mm
- > Dipole focusing introduces slight astigmatism
 - > Mostly compensated by quadrupole imaging
 - > APL could replace quadrupole triplet, would lose astigmatism control
- > Magnifies beam size $(M = M_1 \times M_2)$, demagnifies divergence $(\times 1/M)$

SIMULATION RESULTS

- > Tracking 120-MeV, LPA-like beam
- > Collimator width set to w = dE/E/(2D) = 0.8 mm 1 % energy spread (2 mm vertical width)

DESIGN OUTLOOK

- > Possible improvements
 - > Chromaticity reduction with sextupoles
 - > Somewhat longer chicane
 - > Better beam optics control at few-percent level BW
 - > More quadrupoles
 - > Better optics control at target

> More appropriate beam size for typical applications

> Longer beamline

Longer distance

Sextupoles

BUT WHAT ABOUT IONS?

- > All results so far valid for electrons
- > lons more favorable for radiotherapy, but laser-based beams not yet viable
 - > Recent advances reduce proton source divergence; increase stability; replenishable targets; ...
 - > See C. Palmers plenary from Monday (https://agenda.infn.it/event/46259/contributions/271594/)

Centroid [mrad]

-20-

-40

x'(+60)

200

Shot

10

- > Good news: imaging beamline works for positive particles too! [3]
 - > APL and magnet polarity can be switched

 $w_{B} \; [{\sf mrad}]$

> APL magnification increased (smaller initial object distance)

major • minor

200

CONCLUSIONS

- > Simple, compact transport system
 - > Buildable in small lab
- > Crucial parts already demonstrated
 - > "Low risk"
- > Works for both electrons and ions (small modifications)
- > Important step towards better radiotherapy experiments and eventually (potential) clinical implementation
- > Not adressed in this work: beam profile shaping
 - > Top-hat / flat-top profiles best suited for radiotherapy
 - > Good news: we have a method for this too!

IMPROVED ELECTRON TRANSPORT, POSSIBLE ALTERNATIVE

- > Utilize imaging with combined plasma- and magnetic-optic transport
 - > Image electron source onto aperture using active plasma lens (APL)
 - > Magnification >1
 - > Minimize position jitter on slit
 - > Possible simplification (less energy selectivity, but still some):

