An analytical optimization of plasma density profiles for downramp injection in LWFA

Gaetano Fiore, Universitá "Federico II", and INFN, Napoli 7th EAAC, La Biodola Bay, Isola d'Elba, 21-27 Sept 2025

Joint work with: P. Tomassini, ELI-NP, Magurele, Romania

Outline

- 1 Introduction
- 2 Setup & Plane model

Rephrasing plasma kinematics Plane collisionless multistream plasma model Special case: the initial density $n_{\rm e0}$ is uniform Hydrodynamic regime up to wave-breaking

- 3 Maximizing early WFA of (self-)injected electrons in 4 steps Motion of a test electron in the plasma wave Self-injection and maximal WFA by fixing $n_{\rm e0}$ in 4 steps 3D effects, discussion and conclusions
- 4 References

Introduction

Laser Wake-Field Acceleration (WFA) [Tajima, Dawson 79] is the first and prototypical mechanism of extreme acceleration of charged particles along short distances: electrons "surf" a plasma wave (PW) driven by a very short laser pulse, e.g. in a supersonic diluted gas jet.

The dynamics is ruled by Maxwell equations coupled to a kinetic theory for plasma electrons, ions. Today these eqs can be solved via more and more powerful, but very costly, PIC simulations: better to run them after a preliminary selection of the input data via simpler models.

Everybody's Dream: solving direct and inverse problem

INPUT: Initial (t ≤ 0)

 E,B of free laser pulse;

 Density profile
 n_{e0}=n_{p0}
 of plasma at rest;

PIC simulations:

extremely accurate but very expensive

(Semi)analytical methods in simplified models: approximate, cheap

OUTPUT:

- Motion of electrons & ions $(\Leftrightarrow \text{densities } n_e \text{, } n_p) \text{ for } t \! \geq \! 0$
- **E,B** for $t \ge 0$

Everybody's Dream: solving direct and inverse problem

OUTPUT: Initial $(t \le 0)$

 E,B of free laser pulse;

• Density profile $n_{e0} = n_{p0}$ of plasma at rest;

PIC: no inverse

se

INPUT: for $t \ge 0$

 Desired Motion of electrons: high acceleration, short bunch, low energy spread, low emittance, stability...

More modest aim here: solving direct and inverse *plane* problem

INPUT: slowly modulated
$$\mathbf{E} = \mathbf{\epsilon}^{\perp}(\text{ct-z})$$
, $\mathbf{B} = \mathbf{k} \times \mathbf{E}^{\perp}$ for $\mathbf{t} \leq \mathbf{0}$, e.g. $\mathbf{\epsilon}^{\perp}(\xi) = a_0 \exp[-\xi^2/2\ell^2] \, kmc^2/e \times \mathbf{i} \, \sin k\xi$,

Main goal: maximize early WFA of e⁻ bunches self-injected in the PW by the 1st WB at the density downramp

Can we learn something useful also for 3D?

Given a very short & intense plane-wave laser pulse $\epsilon^{\perp}(ct-z)$, here we propose a multi-step preliminary analytical procedure to tailor the initial plasma density $n_{\rm e0}(z)$ to the pulse, so as to control:

- the formation of the plasma wave (PW);
- 2 its wave-breaking (WB) at density inhomogeneities; ;
- 3 the self-injection of low-charge bunches of plasma electrons in the PW by the first WB at the density down-ramp;
- 4 to maximize the initial stages of the LWFA of the latter.

We use a fully relativistic multi-stream, collisionless plane model, valid as long as no significant change of the ponderomotive force by the pulse.

- 1. Determine n_{e0} by inversion formulae. \mapsto 2. Check its effectiveness.
- $\mapsto~$ 3. Improve it by fine-tuning, solving again the direct problem $~\mapsto~\dots$

Finally, we determine the detailed density and energy distribution of the WFA electrons by FB-PIC simulations.

Step 1

Setup & Plane model

 $\xi=ct-z$ can replace t as the independent parameter along the worldline (WL) λ (in Minkowski space) of any massive particle and in its eq. of motion (EoM). Clock=pulse. WL λ' : $v^z \to c$ as $t \to \infty \Leftrightarrow \xi \to \xi_f < \infty$.

We use: CGS units; dimensionless $\beta \equiv \dot{\mathbf{x}}/c$, $\gamma \equiv 1/\sqrt{1-\beta^2}$, 4-velocity $u = (u^0, \mathbf{u}) \equiv (\gamma, \gamma\beta) = \left(\frac{p^0}{mc^2}, \frac{\mathbf{p}}{mc}\right)$, $s \equiv \gamma - u^z > 0$. $s \to 0$ implies $u^z \to \infty$.

How to simplify the Lorentz EOM

$$\dot{\mathbf{p}}(t) = q \, \epsilon^{\perp} [ct - z(t)] + \mathbf{k} q E^{z}(t, z) + (q/c) \, \mathbf{v}(t) \times \{\mathbf{k} \times \epsilon^{\perp} [ct - z(t)]\} \quad ? \quad (1)$$

Changing variables $t \mapsto \xi$, $p^z \mapsto p^- \equiv p^0/c - p^z = mcs$ transforms (1) into

$$\hat{\mathbf{p}}^{\perp\prime}(\xi) = q\epsilon^{\perp}(\xi)/c, \qquad \hat{s}'(\xi) = \frac{-q}{mc^2} \check{E}^z(\xi, \hat{z}) \tag{2}$$

$$(\epsilon^{\perp} \not\supset \text{unknown } z(t))$$
. If $E^z = 0$ and $\mathbf{p}(0) = 0$ these are immediately solved by $s = 1$, $\hat{\mathbf{p}}^{\perp}(\xi) = (q/c) \int_{-\infty}^{\xi} d\zeta \, \epsilon^{\perp}(\zeta) = (-q/c) \alpha^{\perp}(\xi)$, $\Rightarrow p^z = \mathbf{p}^{\perp 2}/2mc$.

Rephrasing plasma kinematics

We regard ions as immobile. No collisions \Rightarrow : all e^- having the same position \mathbf{X} and velocity \mathbf{V} at t=0 will have the same position $\mathbf{x}_e(t,\mathbf{X},\mathbf{V})$ and velocity $\dot{\mathbf{x}}_e(t,\mathbf{X},\mathbf{V})$ at t>0. Since here $\mathbf{V}=\mathbf{0}$ for all e^- , then $\mathbf{x}_e=\mathbf{x}_e(t,\mathbf{X})$. The hydrodynamic regime (HR) lasts as long as $\mathbf{X}\mapsto\mathbf{x}$ are 1-to-1, i.e. WLs do not intersect. Afterwards: multistream or post-hydrodynamic regime (PHR).

HR: Eulerian observable $f(t, \mathbf{x}) = \tilde{f}(\xi, \mathbf{x}) = \tilde{f}(\xi, \mathbf{X})$ Lagrangian obs. $\mathcal{L}_{\mathcal{A}}$

Plane collisionless multistream plasma model

Transverse plane symmetry implies: Eulerian fields can depend only on t, z; their Lagrangian counterparts and the displacements $\Delta_e \equiv \mathbf{x}_e(t,\mathbf{X}) - \mathbf{X}$ can depend only on t, Z; their "hatted" Eulerian/Lagrangian counterparts can depend only on ξ, z , resp. ξ, Z .

The rigid motion of each electrons' transverse sheet (=very thin layer) is codified by $z_e(t, Z)$ [or $\hat{z}_e(\xi, Z)$].

Different sheets may cross each other [Dawson62]; the HR lasts as long as this does not occur.

z n after

Maxwell eqs

$$\nabla \cdot \mathbf{E} = 4\pi j^{0}, \quad \frac{1}{c} \partial_{t} E^{z} + 4\pi j^{z} = (\nabla \wedge \mathbf{B})^{z} = 0$$
 after (3)

with the above initial conditions are solved by [GF,PT25]

$$E^{z}(t,z) = 4\pi e \left[\widetilde{N}(z) - N_{e}(t,z) \right], \tag{4}$$

$$\widetilde{N}(z) \equiv \int_0^z d\zeta \, n_{e0}(\zeta), \qquad N_e(t,z) \equiv \int_0^\infty dZ \, \widetilde{n_0}(Z) \, \theta[z - z_e(t,Z)]; \qquad (5)$$

 $j^0(t,z)=\mathrm{e}[n_{e0}(z)-n_e(t,z)],$ $j=-en_e\mathbf{v}_e$ are the el. charge density and current density; $\widetilde{N}(z)$, $N_e(t,z)$ are the $\#(\mathrm{protons})$, $\#(\mathrm{electrons})$ per unit transv. surface with $z'\leq z$ at time t. j^μ diverge at WB, N_e does not: (4) 'regularizes' (3).

Simplest gauge choice: also $A = (A^0, \mathbf{A})$ depends only on t, z, and

$$\mathbf{A}^{\perp}(t,z) \equiv -c \int_{-\infty}^{t} dt' \, \mathbf{E}^{\perp}(t',z)$$
 (physical observable); (6)

Since $\mathbf{u}_e^{\perp}(0, \mathbf{x}) = \mathbf{0}$, Lorentz eq. implies $\mathbf{u}_e^{\perp} = e\mathbf{A}^{\perp}/mc^2$.

For
$$t \leq 0$$
 $\mathbf{A}^{\perp}(t,z) = \boldsymbol{\alpha}^{\perp}(ct-z), \qquad \boldsymbol{\alpha}^{\perp}(\xi) \equiv -\int^{\xi} d\zeta \; \boldsymbol{\epsilon}^{\perp}(\zeta).$ (7)

We can reformulate Maxwell eq. $\Box \mathbf{A}^{\perp} = 4\pi \mathbf{j}^{\perp}$ as the integral eq.

$$\mathbf{A}^{\perp}(t,z) - \boldsymbol{\alpha}^{\perp}(ct-z) = -\frac{K}{2} \int d\eta d\zeta \, \theta(\eta) \, \theta\left(ct-\eta - |z-\zeta|\right) \, \left(\frac{n_e \mathbf{A}^{\perp}}{\gamma_e}\right) (\eta,\zeta) \,, \quad (8)$$

 $K \equiv \frac{4\pi e^2}{mc^2}$. Neglecting pulse evolution, $\mathbf{A}^{\perp}(t,z) = \alpha^{\perp}(ct-z)$. The remaining eqs to solve is the family (parametrized by Z) of ordinary Cauchy problems

$$\hat{z}'_{e}(\xi, Z) = \frac{1 + \nu(\xi)}{2\hat{s}^{2}(\xi, Z)} - \frac{1}{2},\tag{9}$$

$$\hat{s}'(\xi,Z) = \frac{e \, \check{E}^z}{mc^2} = K \left\{ \widetilde{N} \big[\hat{z}_e(\xi,Z) \big] - \int_{\hat{s}}^{\infty} d\zeta \, n_{e0}(\zeta) \, \theta \big[\hat{z}_e(\xi,Z) - \hat{z}_e(\xi,\zeta) \big] \right\}, \quad (10)$$

$$\hat{z}_e(0, Z) = Z,$$
 $\hat{s}(0, Z) = 1,$ (11)

in the unknowns $\hat{s}(\xi,Z)$, $\hat{z}_e(\xi,Z)$. Here $v(\xi) \equiv \left(e\alpha_c^\perp(\xi)/mc^2\right)^2$

HR: dynamics reduced to decoupled Hamilton eqs for 1df

As long as the HR holds, eqs (9-11) for different Z's decouple and become eqs

$$\hat{\Delta}' = \frac{1+\nu}{2\hat{s}^2} - \frac{1}{2}, \qquad \hat{s}' = K\left\{\widetilde{N}[Z+\hat{\Delta}] - \widetilde{N}(Z)\right\},\tag{12}$$

$$\hat{\Delta}(0, Z) = 0,$$
 $\hat{s}(0, Z) = 1$ (13)

[GF18] in the unknowns $\hat{\Delta}(\xi,Z) \equiv \hat{z}_{\rm e}(\xi,Z) - Z$, $\hat{s}(\xi,Z)$, $\hat{s}(\xi,Z)$. For each $Z \geq 0$ (12) are **Hamilton equations** $q' = \partial \hat{H}/\partial p$, $p' = -\partial \hat{H}/\partial q$ of a **1-dim** system: $\xi, \hat{\Delta}, -\hat{s}$ play the role of t, q, p, and the Hamiltonian up to mc^2 reads

$$\hat{H}(\hat{\Delta}, \hat{s}, \xi; Z) := \frac{\hat{s}^2 + 1 + \nu(\xi)}{2\hat{s}} + \mathcal{U}(\hat{\Delta}; Z),$$

$$\mathcal{U}(\Delta; Z) := K \int_0^{\Delta} d\zeta \, (\Delta - \zeta) \, n_{e0}(Z + \zeta) .$$
(14)

For $\xi > I$ v = const, $\hat{H} = h(Z) = \text{const}$, (12) are autonomous and **can be solved by quadrature**; if Z > 0 the solutions are periodic in ξ ; $\xi_H(Z) \equiv \text{period}$.

All other unknowns can be expressed via $(\hat{\Delta}, \hat{s})$:

$$\hat{\mathbf{u}}^{\perp} = \frac{e \, \alpha^{\perp}(\xi)}{mc^2}, \qquad \hat{u}^z = \frac{1 + \hat{\mathbf{u}}^{\perp 2} - \hat{\mathbf{s}}^2}{2\hat{\mathbf{s}}}, \qquad \hat{\gamma} = \frac{1 + \hat{\mathbf{u}}^{\perp 2} + \hat{\mathbf{s}}^2}{2\hat{\mathbf{s}}}, \tag{15}$$

$$\hat{\mathbf{x}}_{e}^{\perp}(\xi, \mathbf{X}) - \mathbf{X}^{\perp} = \int_{0}^{\xi} d\eta \, \frac{\hat{\mathbf{u}}^{\perp}(\eta)}{\hat{\mathbf{s}}(\eta, Z)}, \qquad \hat{z}_{e}(\xi, \mathbf{X}) - Z = \hat{\Delta}(\xi, Z). \tag{16}$$

Special case:
$$n_{e0}(Z) \equiv \bar{n} = \text{const}$$

If $n_{e0}(Z) \equiv \bar{n} = \text{const}$, then (12) and its solution are in fact Z-independent:

$$\Delta' = \frac{1+v}{2s^2} - \frac{1}{2}, \quad s' = M\Delta, \quad \Delta(0) = 0, \quad s(0) = 1,$$
 (17)

 $M \equiv K\bar{n} = \frac{\omega_p^2}{c^2}$, $\mathcal{U}(\Delta, Z) = \frac{M}{2}\Delta^2$: relativistic harmonic oscillator. $h(Z; n_{e0}) = \bar{h}(\bar{n})$.

- a) Linearly polarized gaussian pulse with peak amplitude $a_0 \equiv \lambda e E_M^{\perp}/2\pi mc^2 = 2$, $I_{fwhm} = 10\lambda$. We consider $I = 40\lambda$ and cut tails outside -1 $|\xi I/2| < I/2$.
- b) Corresponding solution of (17) if $n_{e0}(z) = \bar{n}^j \equiv n_{cr}/268 (n_{cr} = \pi mc^2/e^2\lambda^2)$ is the critical density); as a result, $E/mc^2 \equiv h = 1.28$.

 \hat{s} is insensitive to fast oscillations of ϵ^{\perp} !

- a) An "optimal" $n_{e0}(z)$ for the above pulse: $\bar{n} = \bar{n}^j = n_{cr}/268$, $n_b = 1.32 \times \bar{n}^j$, $n_B = 1.42 \times \bar{n}^j$, $z_B = 60\lambda$, $z_s z_B = 6.2\lambda$.
- b) WLs of e^- with $Z=0,\lambda,...,95\lambda$ are as plot until they first intersect (circles) \Rightarrow WBs. Black WL: e^- selfinjected by the 1st WB; is Ok for all t. Nearly maximal F=0.286. If $\lambda=0.8\mu\text{m}$, this leads to a remarkable energy gain of 0.182MeV per μm .
- c) Zoom of blue box.

Hydrodynamic regime up to wave-breaking

The HR holds as long as $\hat{J} \equiv \left| \frac{\partial \hat{x}_e}{\partial X} \right| = \frac{\partial \hat{z}_e}{\partial Z} > 0$. For $\xi > I$ [GF et al 23]

$$\hat{J}(\xi + k\xi_H, Z) = \hat{J}(\xi, Z) - k \frac{\partial \xi_H}{\partial Z} \Delta'(\xi, Z), \quad \forall k \in \mathbb{N}, \ Z \ge 0, \quad (18)$$

$$\Leftrightarrow \quad \hat{J}(\xi, Z) = a(\xi, Z) + \xi b(\xi, Z), \tag{19}$$

where $b \equiv -\frac{\partial \log \xi_H}{\partial Z} \hat{\Delta}'$, $a \equiv \hat{J} - \xi b$ are ξ_H -periodic in ξ , and b has zero mean over a period (apply ∂_Z to $\Delta[\xi + n\xi_H(Z), Z] = \Delta(\xi, Z)$, use ξ_H -periodicity of Δ').

By (18) we can extend our knowledge of \hat{J} from $[I, I+\xi_H]$ to all $\xi \geq I$.

Figure 3: $\hat{J}, \hat{\sigma}$ vs. ξ for $Z = Z_b \simeq 121.6\lambda$ and input data as in Fig. 2.

Maximizing the WFA of (self-)injected e^-

Motion of test electrons in the plasma wave

The eqs for a test e^- sheet injected in the PW behind the pulse reduce to

$$\hat{z}'_{i}(\xi) = \frac{1}{2\hat{s}_{i}^{2}(\xi)} - \frac{1}{2}, \qquad \hat{s}'_{i}(\xi) = M\Delta(\xi)$$
 (21)

along the density plateau, and $\hat{s}_i(\xi) - s(\xi) = \delta s \equiv s_{i0} - s(\xi_0) = \text{const}$, cf (17b). If $\delta s < -s_m$ (trapping condition), then $\exists \xi_f > \xi_0 \text{ s.t. } \hat{s}_i(\xi_f) = 0$, e^- is trapped & accelerated in a trough of the PW. As $t \to \infty$

$$z_i \sim ct, \qquad \gamma_i \simeq F z_i / \lambda \xrightarrow{z_i \to \infty} \infty,$$
 (22)

 $F \equiv K \bar{n} \lambda |\Delta(\xi_f)|$; reliable as long as pulse depletion is negligible: $z_i \leq z_{pd}$.

Fixed \bar{n} , if $\delta s = -1$, then $|\Delta(\xi_f)| = |\Delta_m| = \Delta_M$, and F is maximal:

$$\gamma_i(z_i; \bar{n}) \simeq \sqrt{j(\bar{n})} z_i/\lambda,$$
 (23)

$$j(\bar{n}) \equiv \bar{n} \left[\bar{h}(\bar{n}) - 1 \right] 8\pi^2 / n_{cr}, \tag{24}$$

where $\bar{h}(\bar{n})=$ final energy transfered by the pulse to the plateau plasma e^- . Physically, $|\Delta(\xi_f)|=\Delta_M$ means that the test sheet tends to the transverse plane of the travelling bucket where $-E^z$ is maximal. Below $\nu\equiv n_0/n_{cr}$

Self-injection & maximal WFA by fixing n_{e0} in 4 steps

Step 1: Computing $\bar{h}(\nu)$, $j(\nu)$. (We interpolate 200 points; few seconds via Mathematica).

Step 2: Optimal plateau density \bar{n} . If the depth available for WFA is $z_i \leq$ $z_{pd}(\nu_i)$, set $\bar{n}/n_{cr} = \nu_i \equiv \max\{j(\nu)\}$:

$$\gamma_i^M(z_i) \simeq \sqrt{j(\nu_j)} \, z_i / \lambda.$$
 (25)

Step 3: n_{e0} with optimal downramp for self-injection, LWFA.

$$n_{e0}(Z) = \bar{n} + \Upsilon(Z - z_s), \quad z_B \leq Z \leq z_s,$$
 $\Upsilon = \frac{\bar{n} - n_B}{z_s - z_B}.$ Let (ξ_b, Z_b) be the pair (ξ, Z) with smallest ξ s.t. $\hat{J}(\xi, Z) = 0$ The Z_b e^- are the fastest injected & trapped in a PW trough by the 1st WB. We fix Υ, z_B requiring: $\delta s = -1$,

so that (23) applies; no WBDLPI.

Step 4: Choosing an up-ramp of n_{e0} from 0 to n_B and preventing WB for $\xi < \xi_b$; $n_{e0}(z) \simeq O(z^2)$ [GF et al 2022-23].

Figure 4: $\bar{h}-1$ (energygain per plasma e^-) and j by the pulse of fig. 1a, vs. ν

Figure 5: Optimal density associated to the pulse of fig. 1a, used in fig. 2.

out of the ∞ -ly many ones growing

3D effects, discussion and conclusions

Summarizing, the steps of our preliminary optimization process are:

- 1 finding the final energy \bar{h} transferred by the pulse to the plateau plasma electrons and $j=8\pi^2[\bar{h}-1]$ \bar{n}/n_{cr} as functions of the density \bar{n} ;
- 2 finding the 'optimal' value \bar{n}^j of \bar{n} maximizing $j(\bar{n})$, i.e. $E_M^z(\bar{n})$;
- 3 finding the 'optimal' length $z_B z_s$ and slope Υ of the density down-ramp;
- 4 adjusting the up-ramp $(z < z_B)$ of $n_{e0}(z)$ to avoid WB for $\xi < \xi_b$.

Range of applicability of the model?

Depletion and change of ponderomotive force by the pulse are negligible for

$$\frac{z}{l'} \frac{4}{a_0^2} \frac{\bar{n}}{n_{cr}} \left[\bar{h}(\bar{n}) - 1 \right] \ll 1$$
 (26)

Pulse cylindrically symmetric around \vec{z} with waist R: by causality our results hold strictly in the green causal cone trailing the pulse, approximately nearby.

In particular, if the pulse has maximum at $\xi = \frac{1}{2}$, and

$$R > \xi_b - \frac{l}{2}, \quad R \gg \frac{a_0 \lambda}{2\pi} \left[\overline{h} + \sqrt{\overline{h^2 - 1}} \right]$$
 (27)

then the $\mathbf{X} \simeq (0,0,Z_b) e^-$ keep in that cone and move as above: same maximal WFA, as far as pulse not depleted.

Apply our optimization procedure to the pulse of Fig. 1a ($a_0=2$, $I_{fwhm}=10\lambda$): we find the initial density $n_{e0}(z)$ and the WLs of Fig. 2a; F=0.28. Ti-Sa laser: $\lambda \simeq 0.8 \mu \text{m}$; peak intensity $\mathcal{I}=1.7\times 10^{19} \text{W/cm}^2$, $\bar{n}^i=6.5\times 10^{18} \text{cm}^{-3}$ yields the remarkable energy gain of 0.182MeV per μm . of the Z_b electrons (black WL). Very good agreement with FB-PIC simulations (by P. Tomassini):

Figure 6: FB-PIC (1D equivalent) simulations run with input data of fig. 2a.

Figure 7: Comparison between semi-analytical model and FB-PIC (1D equivalent) simulations run with the same input: Maximum longitudinal momentum obtained by the PIC simulation (red circles) and prediction from the theory (blue line).

References

G. Fiore, P. Tomassini, Analytical optimization of plasma density profiles for downramp injection in laser wake-field acceleration, arXiv:2506.06814.

G. Fiore, A preliminary analysis for efficient laser wakefield acceleration. IEEE 20th Advanced Accelerator Concepts workshop (AAC22), Naperville, Nov. 6-11, 2022. https://doi.org/10.1109/AAC55212.2022.10822960

G. Fiore, T. Akhter, S. De Nicola, R. Fedele, D. Jovanović, Phys. D: Nonlinear Phenom., 454 (2023), 133878.

G. Fiore, M. De Angelis, R. Fedele, G. Guerriero, D. Jovanović, Mathematics 10 (2022), 2622; Ricerche Mat. (2023).

G. Fiore, P. Catelan, Nucl. Instr. Meth. Phys. Res. A909 (2018), 41-45.

G. Fiore, J. Phys. A: Math. Theor. **51** (2018), 085203.

G. Fiore, J. Phys. A: Math. Theor. 47 (2014), 225501.

G. Fiore, R. Fedele, U. de Angelis, Phys. Plasmas 21 (2014), 113105.

G. Fiore, S. De Nicola, Phys. Rev. Acc. Beams 19 (2016), 071302 (15pp).

G. Fiore, Ricerche Mat. 65 (2016), 491-503.

