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Introduction

Laser Wake-Field Acceleration (WFA) [Tajima, Dawson 79] is the first
and prototypical mechanism of extreme acceleration of charged particles
along short distances: electrons “surf’ a plasma wave (PW) driven by a
very short laser pulse, e.g. in a supersonic diluted gas jet.
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The dynamics is ruled by Maxwell equations coupled to a kinetic theory
for plasma electrons, ions. Today these eqs can be solved via more and
more powerful, but very costly, PIC simulations: better to run them after
a preliminary selection of the input data via simpler models.



Everybody’s Dream: solving direct

INPUT: Initial (t<0)

* E,B of free
laser pulse;

* Density profile
neO =np0
of plasma at rest;

PIC simulations:
extremely accurate]
but very expensive

(Semi)analytical
methods in sim-
plified models:
approximate,
cheap

OUTPUT:

* Motion of electrons & ions
(= densities n, ny) fort=0

*EB for t>0




Everybody’s Dream: and inverse problem

OUTPUT: Initial (t=<0) INPUT: fort>0

* E,B of free
laser pulse;

* Desired Motion of electrons:
high acceleration, short
bunch, low energy spread,
low emittance, stability...

* Density profile

neO =np0

of plasma at rest;




More modest aim here: solving direct and inverse plane problem

INPUT: slowly modulated E =g (ct-z), B=kxE" fortsO0,
£(8) = a, exp[- &2€] kmc?/e * i sin k¢,

PIC sim

Semi-analytical
method

e.g.
INPUT/OUTPUT:
L% S
7l
x! z

Semi-analytical

method

OUTPUT/INPUT: fort>0

* Motion (WLs) of electrons
« A (t,2), E(t,2) =
E = -0,A"(t,2)+ k E¥(t,2)

B=Vx A'(t,z2)

Main goal: maximize early WFA of e bunches self-injected in the PW by the 1st WB at the density downramp

Can we learn something useful also for 3D?




Given a very short & intense plane-wave laser pulse e*(ct—z),
here we propose a multi-step preliminary analytical procedure
to tailor the initial plasma density neo(z) to the pulse,

so as to control:

@ the formation of the plasma wave (PW);
@ its wave-breaking (WB) at density inhomogeneities; ;

© the self-injection of low-charge bunches of plasma electrons in the
PW by the first WB at the density down-ramp;

@ to maximize the initial stages of the LWFA of the latter.
We use a fully relativistic multi-stream, collisionless plane model, valid as
long as no significant change of the ponderomotive force by the pulse.

1. Determine ney by inversion formulae. — 2. Check its effectiveness.
— 3. Improve it by fine-tuning, solving again the direct problem

Finally, we determine the detailed density and energy distribution of the
WFA electrons by FB-PIC simulations.
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Step 1

Step 1: compute E /(1)




Step 2

Step 2: choose the plateau 7i

so that it maximizes E_ 7 )
"Ezvy




Step 3

Step 3: choose downramp so that 1st WB injects e~ in PW with best phase




Step 4

Step 4: choose the upramp
so as to avoid WBDLPI




Setup & Plane model

ct+z

L AXe()R(9)

& = ct—z can replace t as the independent parameter along the worldline (WL)
A (in Minkowski space) of any massive particle and in its eq. of motion (EoM).
Clock=pulse. WL X: v = cast— 00 & £ — & < o0.

We use: CGS units; dimensionless 3=x/c, v=1/1/1—32, 4-velocity
u:(uo,u)z(fy,fyﬁ):(po l), s=y—u®>0. s—0 implies v* —o0.

mc2? mc



ct+z

AN AG)

How to simplify the Lorentz EOM
p(t) = ge[ct—z(t)] + kqE*(t,2) + (g/c)v(t) x {kxe [ct—z(t)]} 7 (1)
Changing variables t — ¢, p* — p~ = p°/c — p?> = mc's transforms (1) into
B =qe’ (/e (O = —TE(S2) (2)
(e* 2 unknown z(t)). If EZ =0 and p(0) = 0 these are immediately solved by
s=1 8 (§) = (a/c) [* e (C) = (=q/c)a* (), = p* =p"?/2mc.



Rephrasing plasma kinematics

We regard ions as immobile. No collisions =: all e~ having the same position
X and velocity V at t = 0 will have the same position x.(t, X, V) and velocity
xe(t,X,V) at t > 0. Since here V = 0 for all e, then x. = x(t, X). The
hydrodynamic regime (HR) lasts as long as X — x are 1-to-1, i.e. WLs do not
intersect. Afterwards: multistream or post-hydrodynamic regime (PHR).

ct

=ct-z o7 SR
f ct+z

XE(X,,2) | —

Xeov2) N EX)

Z,z
X =Xe (t: X) =ﬁe (‘f! X)

HR: Eulerian observable f(t,x) = f(&,x) = f(t,X) = £(¢,X) Lagrangian obs.



Plane collisionless multistream plasma model

Transverse plane symmetry implies:

Eulerian fields can depend only on t, z; | A
their Lagrangian counterparts and the displacements | |
A, = x.(t,X) —X can depend only on t, Z; Ce ‘\\

their “hatted” Eulerian/Lagrangian counterparts can (
depend only on &, z, resp. &, Z. before

The rigid motion of each electrons’ transverse sheet ‘ M- -\
(=very thin layer) is codified by z.(t, Z) [or 2.(¢, Z)]. [\ v [ ‘

Different sheets may cross each other i@ L

the HR lasts as long as this does not occur. ey
Maxwell eqs - = E
V-E=4r°, 10,E*+4rj=(VAB)=0 e (3)
with the above initial conditions are solved by
E*(t,z)=4me[N(z)— Ne(t, 2)], (4)
N(z) = /d( neo(¢), Ne(t,z) = /dZ no(Z) 9[2 - ze(t,Z)]; (5)
0 0
J°(t,2) = e[neo(2) —ne(t, )], j = —eneve are the el. charge density and current

density; N(z), Ne(t,z) are the #(protons), #(electrons) per unit transv. surfa-
ce with z' <z at time t. j* diverge at WB, N. does not: (4) ‘regularizes’ (3).



Simplest gauge choice: also A = (AO, A) depends only on t, z, and

A (t,z) = —c/t dt' EX(t, 2) (physical observable); (6)
Since uZ (0,x)=0, Lorentz eq. implies uZ = eA*/mc>.
Fort<0  A(t,2)=a'(ct—2), a'(f)= —/f dc e (0). 7)
We can reformulate Maxwell eq. OA~* = 4xj* as the integral eq.
K (12) o (ct-2) = =5 [anacon)o(ce-n-lz—) ("2) 0.0, @)

= 4;:2 . Neglecting pulse evolution, A“(t,z) = a*(ct—z). The remaining

eqgs to solve is the family (parametrized by Z) of ordinary Cauchy problems

o 1) 1

2.(¢, )—W—Ev 9)
gez)= 2E - { (2.6, 2)] / °§<neo(cw[fe(aZ)—z@gn}, (10)

2.(0,2) = Z, 50,2) =1, (11)

in the unknowns $(§,Z), 2.(¢,Z). Here v(¢) = (eaL(g)/mc2)2.



HR: dynamics reduced to decoupled Hamilton eqs for 1df
As long as the HR holds, eqs (9-11) for different Z's decouple and become eqgs

A= 12*5:2‘/—%, ¢ =Kk {N[Z+A]-N(2)}. (12)
A(0,2) =0, 50,2) =1 (13)

in the unknowns A(¢,2) = ze(g Z)-Z, §(¢, Z) $(¢,2). For each
Z >0 (12) are Hamilton equations q = 8H/8p p = —8H/8q of a 1-dim
system: &, A —3 play the role of t, g, p, and the Hamiltonian up to mc? reads
82 4+ 14v(€)
28

u(A;Z)::K/Odg(A—g) neo(Z+¢) .

A(A, 3,6 2) = +U(A; 2),

(14)

For £ > | v=const, H=h(Z)=const, (12) are autonomous and can be solved
by quadrature; if Z>0 the solutions are periodic in &; £4(Z) = period.

All other unknowns can be expressed via (A, 3):
ot eat(£) U T 1461+ 8

= U=——77 Y= ~
mc2 ’ 28 ’ v 28 ’

(15)

¢ gt .
RE(€,X) — X* :/Odn g (m) 5.(6,X) - Z=A(2).  (16)



Special case: neo(Z) = i = const

If neo(Z) = A = const, then (12) and its solution are in fact Z-independent:

1+v 1

252 2’
M= Ki :% UAZ)=Yn?

A=

a) Linearly polarized gaus-
sian pulse with peak ampli-
tude ap=\eEy /2nmc* =2,
Iswhm = 10X.  We consider
=40\ and cut tails outside
[&E—=1/2|<1/2.

b) Corresponding solution
of (17) if neo(z) = # =
Ner /268 (ne =mmc® /e’ A% is
the critical density); as a re-
sult, E/mc* = h=1.28.

§ is insensitive to fast
oscillations of €*

s’ = MA, A(0)=0, s(0)=1, (17)

: relativistic harmonic oscillator. h(Z;neo)=h(#).
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a) An “optimal” neo(z)
for the above pulse: n
= ne/268, np =
1.32x #,

ng=1.42 x i,

zg =60\, zs—zg=6.2)\.

b) WLs of e™ with Z=
0,A,...,95)\ are as plot
until they first intersect
(circles) = WBs.
Black WL: e~ self-
injected by the 1st
WB; is Ok for all t.
Nearly maximal F =
0.286. If A = 0.8um,
this leads to a re-
markable energy gain of
0.182MeV per pm.

c) Zoom of blue box.
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Hydrodynamic regime up to wave-breaking

The HR holds as long as J = 6"9 BZE > 0. For & >1[GF et al 23]
Jerkenz) = J&.2)- ‘%” A(¢.Z), VkeN, Z>0, (18)
e JE&z) = ag2) +5b(£,2), (19)

where b = —ak’%g”ﬁ', a= f—fb are &y-periodic in &, and b has zero mean
over a period (apply 0z to A[é+néu(2),Z]=A(&,Z), use Eu-periodicity of A).

By (18) we can extend our knowledge of J from [/, /4] to all & > 1.

Z=7,=121.61

4 & arin o Geddn
Ficure 3: J.& vs. £ for 7 — 7. ~ 121.6\ and inout data asin Fig. 2.



Maximizing the WFA of (self-)injected e~

Motion of test electrons in the plasma wave

The eqs for a test e~ sheet injected in the PW behind the pulse reduce to
2O =g 5 S =MAE) (21)
ST e YT

along the density plateau, and $;(§)—s(§) = ds=sjo—s(&o) = const, cf (17b).
If s < —s, (trapping condition), then 3¢, >& s.t. §i(&) =0, e is
trapped & accelerated in a trough of the PW. As t — o

zj—00

z; ~ ct, vi ~ Fzi/]A —— oo, (22)
F=KnaX|A(&f)|; reliable as long as pulse depletion is negligible: zj < z,4.
Fixed f, if 6s=—1, then |A(&f)| = |An| = Aw, and F is maximal:

~i(zi; A) ~ \/j(A) zi/A, (23)
j(R) = A[h(R)—1]87°/ner, (24)

where h(7i) = final energy transfered by the pulse to the plateau plasma e™.
Physically, |A(&f)] = Awm means that the test sheet tends to the transverse
plane of the travelling bucket where —E* is maximal. Below v=ng/nc.



Self-injection & maximal WFA by fixing neg in 4 steps

Step 1: Computing h(v), j(v). R)-1 — 5j(»)
(We interpolate 200 points; few :
seconds via Mathematica). 03

Step 2: Optimal plateau density 7.
If the depth available for WFA is z; < i;/" iy
- _ . 0.000 0.002 0.004 0.006 0.008 0.010 0.012
2,4(vj), set ii/ne=v;=max{j(v)}: ,
v (z1) = Vj(v;) 21/ M (25) Figure 4: h—1 (energygain per plasma
Step 3: n. with optimal down- e ) and j by the pulse of fig. 1a, vs. v
ramp for self-injection, LWFA.

neO(Z) = FH‘T(Z_Zs)y zg < Z < Zs,

T =75 Let (&,Z) be the pair

zs—zg *
(&,Z) with smallest & s.t. J(¢,Z2)=0
The Z, e™ are the fastest injected &

trapped in a PW trough by the 1st  Figyre 5: Optimal density associated
WB. We fix T, zg requiring: 6s = —1, ¢ the pulse of fig. 1a, used in fig. 2.
so that (23) applies; no WBDLPI.

Step 4: Choosing an up-ramp of ney out of the co-ly many ones growing
from 0 to ng and preventing WB for £ <&; neo(z) ~ O(z%) [GF et al
2022-23].




3D effects, discussion and conclusions
Summarizing, the steps of our preliminary optimization process are:
@ finding the final energy h transfered by the pulse to the plateau plasma
electrons and j = 87%[h—1] fi/n., as functions of the density A;
@ finding the ‘optimal’ value # of /i maximizing j(#), i.e. EZ(A);
© finding the ‘optimal’ length zg—z, and slope T of the density down-ramp;
@ adjusting the up-ramp (z < zg) of neo(z) to avoid WB for £ < &.

Range of applicability of the model?
Depletion and change of ponderomotive force by the pulse are negligible for
z 4 n
== h(n) —1 1 26
AT [ 1] < (26)
Pulse cylindrically symmetric around Z with waist R: by causality our results
hold strictly in the green causal cone trailing the pulse, approximately nearby.

x

plasma.

In particular, if the pulse has maximum at £ = é and
/
R>&-5 R> aL [h+\/h2 } (27)

then the X ~ (0,0,Z,) e~ keep in that cone and move as
above: same maximal WFA. as far as pulse not depleted!




Apply our optimization procedure to the pulse of Fig. 1a (ao=2, lfwhm=10M\):
we find the initial density neo(z) and the WLs of Fig. 2a; F = 0.28.

Ti-Sa laser: A~0.8um; peak intensity Z=1.7x10""W/cm?, # =6.5 x10"8cm 3
yields the remarkable energy gain of 0.182MeV per um. of the Z, electrons
(black WL). Very good agreement with FB-PIC simulations (by P. Tomassini):
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Figure 6: FB-PIC (1D equivalent) simulations run with input data of fig. 2a:
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Figure 7: Comparison between semi-analytical model and FB-PIC (1D
equivalent) simulations run with the same input: Maximum longitudinal
momentum obtained by the PIC simulation (red circles) and prediction
from the theory (blue line).
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