All-optical In-plasma Staging of Laser-Wakefield Accelerators Using Density Tailoring

Xingjian Hui, Alberto Martinez de la Ossa, Alexander Sinn, Ángel Ferran Pousa, Mathis Mewes, Rob Shalloo, Maxence Thévenet Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany

Presenter: Xingjian Hui

PhD student at DESY/UHH

(Prof.Dr. Wim Leemans and Dr. Maxence Thévenet)

Elba 09.2025

Single stage or multistage toward higher energy?

Efforts have been made on multistage coupling for LPA

Tape-based plasma mirror

S. Steinke, et al. Nature 530, 190-193 (2016)

Curved Plasma Laser Guiding

X. Zhu et al. PRL 130,215001(2023)

Non-linear achromatic plasma lens

P. Drobniak et al. arXiv:2411.00925 [physics.acc-ph]

Staging comes with the challenges like:

- Laser in&out coupling -- All-optical
- Beam capturing -- In-plasma
- ...

In-plasma laser coupling is possible by refraction

Assume a Gradient profile of:

$$n_e = n_0 \left(1 - \frac{y}{L} \right)$$

Gradient length: L

The deflection angle:

$$\theta = \frac{\lambda_l^2 e^2 D}{8\pi^2 m_e \varepsilon_0 c^2} \frac{\partial n}{\partial \vec{x}} \sim 10 \ mrad$$

Spatio-temporal coupling derived as:

Group Delayed Dispersion (s²)=
$$\frac{dt_0}{d\omega} = \frac{\omega_p^2}{\omega_l^3} t$$

Angular Dispersion (s)=
$$\frac{d\theta_0}{d\omega} = \frac{e^2 n_0 D}{m_e \epsilon_0 \omega^3 L}$$

Spatial Dispersion (m·s)=
$$\frac{dx_0}{d\omega} = \frac{e^2 n_0 D^2}{m_e \epsilon_0 \omega^3 L}$$

Pulse Front Tilt (s)=
$$\frac{dt_0}{dx}$$

DESY.

A design of plasma density profile is proposed to realize staging

- Laser in-&out-coupling using transverse density gradient without solid structures
- Witness stays in plasma in coupling region, confined by self-driven wakefield

DESY. Page 5

The density profile is refined to couple the driver and witness

- Operating density is around $\sim 10^{17} cm^{-3}$
- Density gradient length is $\sim 10^2 \mu m$
- Diffraction/Capturing region long enough to release and capture the beam

Self developed code ecology forms up a complete workflow

Simulate wakefield acceleration and more...

HIPACE++: a 3D Quasi-static GPU-portable, open-sourced PIC code

More contributors are welcome!

Numerics highlights

- Super fast: Less than 2 min for one 30 cm 3D LPA stage simulation
- Advanced algorithms, parallel and mesh refinement
- Multiphysics
- Portable laptops, gaming GPUs, JUWELS Booster, LUMI, Perlmutter, etc.
- Builds on Linux, Windows, MacOS

All simulations are 3D, start-to-end and realistic

Bayesian optimization with PIC provides a good laser guiding

Evolution of the drive laser in a staging unit with $n_0 = 2 \times 10^{17} \text{ cm}^{-3}$, $L = 400 \ \mu m$ and $w_m \approx 39 \ \mu m$

- Bayesian optimisation helps align and guide the laser
- Small oscillation comes from slight pulse front tilt

What laser should we initialize?

Optimize the parameters

Laser parameters at this WP

E ₀ (J)	13.92 J
$w_0 (\mu m)$	50
z_{foc} (mm)	93.05
<i>y</i> ₀ (mm)	0.267
θ (mrad)	-5.46
β (s)	$-0.45 \times 10^{-17} \ s$
ζ (m·s)	$0.4\times10^{-18}\ m\cdot s$

Working point for the second stage from 10 GeV

- 100% beam are captured and accelerated!
- 4(-0.5) GeV energy gain
- Beam loading is handled by adjusting the chirp

The concept is inherently compatible with ion motion

Mached rms bunch size:

$$\sigma_{y} = k_{p}^{-\frac{1}{2}} \left(\frac{2\epsilon_{n,y}^{2}}{\gamma_{b}} \right)^{1/4}$$

Assuming ion are stationary and full blow-out

- Electron motion due to partial blow-out
- Ion motion due to increase of charge density

Longitudinal tailored matched beam can be produced as witness stays in plasma

[C. Benedetti et al. Physics of Plasmas 28, 053102 (2021)]

The DESY plasma group MPL

Andi Maier group leader

Wim Leemans division director

Paul Winkler Coordinator Plasma Injector

Manuel Kirchen Team Leader High Average Power LPA Maxence Thévenet - EAAC2025 - 23.09.2025

Guido Palmer Team Leader Laser Development

Rob Shalloo Team Leader High Energy LPA

Maxence Thévenet Team Leader Theory & Simulations

Jon Wood Team Leader Beam-Driven Plasma Acceleration

Kris Põder Team Leader LPA Applications

Lutz Winkelmann Team Leader Scientific Engineering

Infrastructure

Conclusion

- With realistic s2e 3D simulations we demonstrate in-plasma staging
- > 3.5 GeV gain from second HOFI LPA stage with capturing ratio of 100%
- > Beam loaded, emittance preserved in most of the beam
- Compatible with strong ion motion and adiabatic matching

Perspectives

- Main challenges are head erosion and laser coupling
- Later stages are easier, even with strong ion motion
- Still working on laser coupling, emittance preservation, etc.
- Being wrapped up for publication, to be submitted next weeks.

DESY. Page 12