hhu.

Nonlinear interactionpoint dynamics for plasma-accelerated beams

T. C. Wilson, J. Farmer, F. Wileke, N. Lopes, A. Pukhov, A. Caldwell

Talk Structure

1. Introduction

- 1. Luminosity and disruption
- 2. Plasma accelerators

2. Plasma-accelerated beams

- Angled beams
- 2. Hourglass effect
- 3. Plasma-relevant beam profiles

3. Summary and Further work

Luminosity

Particle beams cross each other, and events will occur with some rate

$$\frac{\mathrm{d}R_i}{\mathrm{d}t} = \mathcal{L} \ \sigma_i$$

Luminosity is the overlap of the two beams. Gaussian beams for instance give;

$$\mathcal{L} = \frac{N_1 N_2}{4\pi \sigma_x \sigma_y}$$

But beams rarely cross each other without changing shape!

Pinch & disruption

e⁻e⁺ colliders exhibit pinching at the IP, the reason for this is easy to see

As the bunches collide, the defocussing E-field is neutralised, and the focussing B-field is enhanced

The amount that the beam pinches is summarised as **disruption**Conventional colliders mitigate this by making beams **flat**

- Plasma acceleration offers high gradients, which means shorter accelerators. Beams are;
 - typically round
 - quasimonoenergetic, with 0.1 10% energy spread
 - limited by the size of the plasma wake to around ~100 μm in length
 - In the case of positrons, typically **high emittance**

Beam parameters:

Q = 0.8 nC

 $\sigma_x = \sigma_y = 20 \text{ nm}$

 $\sigma_z = 70 \ \mu \text{m}$

 $\gamma = 370,000 \pm 0.3\% (190 \text{ GeV})$

 $\beta_x^* = \beta_y^* = 1 \text{ mm } (\epsilon_n = 150 \text{ nm})$

short-bunch proton-driven wakefield structure
J Farmer et al 2024 New J. Phys. 26 113011

VLPL 3D-QED Simulation

- As the beams pinch, the fields increase in turn, which can lead to strong-field QED effects
- high-energy photons are produced, and in the case of very high disruption, e-e+ pairs
- As these secondary particles are produced, the beams lose energy
 so called 'beamsstrahlung'
- Pair-production in particular is tricky to model, because new charged particles create fields of their own, which can dramatically affect the interaction
- We need simulations!

EAAC 2025

VLPL 3D-QED Simulation

- As the beams pinch, the fields increase in turn, which can lead to strong-field QED effects
- high-energy photons are produced, and in the case of very high disruption, e-e+ pairs
- As these secondary particles are produced, the beams lose energy
 so called 'beamsstrahlung'
- Pair-production in particular is tricky to model, because new charged particles create fields of their own, which can dramatically affect the interaction
- We need simulations!

VLPL 3D-QED Simulation

- As the beams pinch, the fields increase in turn, which can lead to strong-field QED effects
- high-energy photons are produced, and in the case of very high disruption, e-e+ pairs
- As these secondary particles are produced, the beams lose energy
 so called 'beamsstrahlung'
- Pair-production in particular is tricky to model, because new charged particles create fields of their own, which can dramatically affect the interaction
- We need simulations!

VLPL 3D-QED Simulation

- As the beams pinch, the fields increase in turn, which can lead to strong-field QED effects
- high-energy photons are produced, and in the case of very high disruption, e-e+ pairs
- As these secondary particles are produced, the beams lose energy
 so called 'beamsstrahlung'
- Pair-production in particular is tricky to model, because new charged particles create fields of their own, which can dramatically affect the interaction
- We need simulations!

- As the beams pinch, the fields increase in turn, which can lead to strong-field QED effects
- high-energy photons are produced, and in the case of very high disruption, e-e+ pairs
- As these secondary particles are produced, the beams lose energy
 so called 'beamsstrahlung'
- Pair-production in particular is tricky to model, because new charged particles create fields of their own, which can dramatically affect the interaction
- We need simulations!

EAAC 2025

Colliding two of these beams gives us a starting point

Colliding two of these beams gives us a starting point

Colliding two of these beams gives us a starting point

14

Colliding two of these beams gives us a starting point

Colliding two of these beams gives us a starting point

15

Colliding two of these beams gives us a starting point

Colliding two of these beams gives us a starting point

Crossing Angles

18

Crossing Angles

Crossing angles modify the luminosity by a factor

$$S = \left[1 + \left(\frac{\sigma_z}{\sigma_x} \tan \frac{\theta}{2}\right)^2\right]^{-\frac{1}{2}}$$

Crossing Angles

Crossing angles modify the luminosity by a factor

$$S = \left[1 + \left(\frac{\sigma_z}{\sigma_x} \tan \frac{\theta}{2}\right)^2\right]^{-\frac{1}{2}} \qquad \text{an } \frac{\theta}{\theta} = 0.0$$

Directly reducing the overlap between the two beams reduces both disruption and the attainable luminosity, but the interaction becomes insensitive to beam quality

The hourglass effect

The emittance of a beam cause the size of the beam to vary with distance from its focus, much like a laser. This effect also causes a reduction in crossover and hence luminosity

$$H = \sqrt{\pi} \ u_x \exp(u_x^2) \operatorname{erfc}(u_x)$$

$$u_x = \frac{\beta_x^*}{\sigma_z}$$

$$0.0 = \frac{1.0}{0.00}$$

The hourglass effect

The emittance of a beam cause the size of the beam to vary with distance from its focus, much like a laser. This effect also causes a reduction in crossover and hence luminosity

$$H = \sqrt{\pi} \ u_x \exp(u_x^2) \operatorname{erfc}(u_x)$$

$$u_x = \frac{\beta_x^*}{\sigma_z}$$

$$0.0 = \frac{1.0}{0.00}$$

The reduction in disruption causes a large drop in total luminosity, but quality of the signal improves as beam quality degrades, leaving the top 1% fraction relatively insensitive

What might we be colliding?

- Beamloading in plasma accelerators traditionally calls for downramp (fat-end first) bunches
- Optimal profiles for acceleration over very long distances take on weird and wonderful shapes
- If the beams require focussing after leaving the plasma, the eventual shape may be different again

T. Katsouleas et al., Particle Accelerators, 22, 81-99, 1987

Longitudinal shape factors

It makes sense to scan several different shapes to see how different the results are

24

Longitudinal shape factors

It makes sense to scan several different shapes to see how different the results are

25

- Large variations in the total luminosity are all smoothed out when looking at the top 1%
- The overwhelming factor for the high-energy fraction is the projected emittance
- All profiles converge towards similar values at high emittance

Summary

- The kinds of bunch profiles typical of plasma accelerators offer similar performance to those of conventional accelerators
- The high disruption of round beams can be mitigated with increased emittance, trading off absolute luminosity for quality of signal
- The effect of signal to noise ratio should be evaluated with start-to-end (system) codes and detector simulation
- As we move towards higher-energy colliders, scanning broad range of collision energies becomes a useful property, so figures of merit may change

Thank you for your attention