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B Particle beams cross each other, and events will occur with some rate

de'
—_— L O’.
dt L

B |Luminosity is the overlap of the two beams. Gaussian beams for instance give;
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® But beams rarely cross each other without changing shape!
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e-e* colliders exhibit pinching at the IP, the reason for this is easy to see
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As the bunches collide, the defocussing E-field is neutralised, and the focussing B-field is
enhanced

The amount that the beam pinches is summarised as disruption

Conventional colliders mitigate this by making beams flat
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® Plasma acceleration offers high gradients, which o w 1 . : F

means shorter accelerators. Beams are; -
typically round
guasimonoenergetic, with 0.1 — 10% energy spread e

limited by the size of the plasma wake to around ~100 v 7 4
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J Farmer et al 2024 New J. Phys. 26 113011
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B As the beams pinch, the fields
increase in turn, which can lead
to strong-field QED effects

® high-energy photons are
produced, and in the case of very
high disruption, e-e* pairs

B As these secondary particles are , —
produced, the beams lose energy o »
— so called 'beamsstrahlung’ @ —

B Pair-production in particular is
tricky to model, because new
charged particles create fields of

their own, which can dramatically
affect the interaction e .

. . et
B \We need simulations! Breit-Wheeler e-
Briet-Wheeler e* -
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As the beams pinch, the fields
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to strong-field QED effects

high-energy photons are
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As these secondary particles are
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® Colliding two of these beams gives us a starting point 0.4 fz
0.2 10° ©
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®m Colliding two of these beams gives us a starting point 0,49 E
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® Colliding two of these beams gives us a starting point 047 pa
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no crossing angle with crossing angle
< > —
complete overlap partial overlap
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no crossing angle with crossing angle
< > —
complete overlap partial overlap

® Crossing angles modify the luminosity by a factor
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no crossing angle with crossing angle _ 6 = 16.5 mrad
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B Directly reducing the overlap between the two 5 .
beams reduces both disruption and the attainable N
luminosity, but the interaction becomes insensitive 0% ' | s
to beam qua“ty Projected normalised emittance [nm]
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® The emittance of a beam cause the size of the
beam to vary with distance from its focus, much like
a laser. This effect also causes a reduction in
crossover and hence luminosity

H = i u, exp(u?) erfc(u,) 10
'3; I 0.5
u, = —
x UZ 0-0 T T T T

0 20 40 60 80 100
&n [Um]
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B \What might we be colliding?

Beamloading in plasma accelerators traditionally calls for
downramp (fat-end first) bunches

Optimal profiles for acceleration over very long distances
take on weird and wonderful shapes

®m |f the beams require focussing after leaving the plasma, the

eventual shape may be different again
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https://indico.slac.stanford.edu/event/9734/
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total electric field

Kol kel

T. Katsouleas et al., Particle Accelerators, 22, 81-99, 1987
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B |t makes sense to scan several different shapes to
see how different the results are

Gaussian
Universal default

Parabolic
From RF accelerators

From (e.g.) lonisation
injection

Downramp
Optimal for beamloading
over short distances

AN
N
—
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B |t makes sense to scan several different shapes to
see how different the results are

—e— Gaussian
—e— Parabolic
—e— Upramp
—e— Downramp
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® The kinds of bunch profiles typical of plasma
accelerators offer similar performance to
those of conventional accelerators

® The high disruption of round beams can be
mitigated with increased emittance, trading
off absolute luminosity for quality of signal

B The effect of signal to noise ratio should be
evaluated with start-to-end (system) codes
and detector simulation

B As we move towards higher-energy colliders,
scanning broad range of collision energies
becomes a useful property, so figures of
merit may change

Thank you for your attention s
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