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High-Quality Multi-GeV Electron Beams Driven by LPAs

Critical for advanced light sources at DESY

Compact X-Ray Free Electron Laser Driver

Plasma Injector for PETRA IV Synchrotron
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Friday @ 11:30 am, Plenary - Sergey Antipov
“Simulations of the Plasma Injector for PETRA IV”

LPA simulation

Injection
channel

PETRA IV Figure: Alberto de la Ossa
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Optically Tailored Plasma Sources
Hydrodynamically generated structures suitable for waveguiding and for electron injection

Transverse Tailoring

Longitudinal Tailoring

hot plasma column expanded HOFI waveguide
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Wednesday @ 18:20, Sala Bonarparte 1 — Anna Puchert
“Laser Pulse Tailoring for HOFI Waveguide Generation”

- Plasma column field ionised and heated by fs laser
- Expanding plasma drives shock into surrounding gas
- Generates radial density profile suitable for guiding

probe
beam

to electron spectrometer
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ARTICLE Open Access

Controlled acceleration of GeV electron beams in
an all-optical plasma waveguide

Kosta Oubrerie', Adrien Leblanc', Olena Kononenko', Ronan Lahaye', Igor A. Andriyash', Julien Gautier®',
Jean-Philippe Goddet', Lorenzo Martelli', Amar Tafzi", Kim Ta Phuoc', Slava Smartsev'? and Cédric Thaury®'™
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Abstract

Laser-plasma accelerators (LPAs) produce electric fields of the order of 100GV m™~", more than 1000 times larger than
those produced by radio-frequency accelerators. These uniquely strong fields make LPAs a promising path to generate
electron beams beyond the TeV, an important goal in high-energy physics. Yet, large electric fields are of little benefit if
they are not maintained over a long distance. Jtis theref f the trmost i fo atide the ultra-int laser . oy s .
pulse that drives the accelerator. Reaching vel A d t 't 't '|: | 't 't t '|:
change completely from shot to shot, due to PHYSICAL REVIEW LETTERS 131, 245001 (2023) e n S I ran S I I O n C an aC I I a e e n e ra I O n O
plasma accelerators can already address guidi | Featured in Physics |

However, the production of beams that are si | - d b r r l

This paper presents a novel experiment, cou OW e n e rg y S p rea ea S
facilitating the reliable and efficient acceleratio All-Optical GeV Electron Bunch Generation in a Laser-Plasma Accelerator via

Truncated-Channel Injection

A. Picksley®,"" J. Chappell®,' E. Archer®,' N. Bourgeois, J. Cowley®,' D.R. Emerson®,’ L. Feder,! X.J. Gu®,’
0. Jakobsson,” Al Ross,l W. Wang,1 R. Walczak@,l'4 and S. M. Hooker®'*
"John Adams Institute for Accelerator Science and Department of Physics, University of Oxford,
Denys Wilkinson Building, Keble Road, Oxford OXI 3RH, United Kingdom
2Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
3.S’L‘izentiﬁc Computing Department, STFC Daresbury Laboratory, Warrington WA4 4AD, United Kingdom
“Somerville College, Woodstock Road, Oxford OX2 6HD, United Kingdom

® (Received 24 July 2023; revised 11 October 2023; accepted 7 November 2023; published 12 December 2023)

‘We describe a simple scheme, truncated-channel injection, to inject electrons directly into the wakefield
driven by a high-intensity laser pulse guided in an all-optical plasma channel. We use this approach to generate
dark-current-free 1.2 GeV, 4.5% relative energy spread electron bunches with 120 TW laser pulses guided in a
110 mm-long hydrodynamic optical-field-ionized plasma channel. Our experiments and particle-in-cell
simulations show that high-quality electron bunches were only obtained when the drive pulse was closely
aligned with the channel axis, and was focused close to the density down ramp formed at the channel entrance.
Start-to-end simulati f the channel formation, and electron injection and acceleration show that increasing
the channel length to 410 mm would yield 3.65 GeV bunches, with a slice energy spread ~5 x 10~

DOL: 10.1103/PhysRevLett.131.245001
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Bubble Dynamics Within a Plasma Channel
Radial Electron Density Profile Strongly Influences Bubble Length
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Bubble Dynamics Can be Controlled By Radial Density Tailoring

[1] W. Lu et al., PR-STAB 10, 061301 (2007)
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Waveguide Constriction for Promoting Localized Injection
Generated through the collision of hydrodynamic shocks

Plasma Formation Plasma Expansion / Interaction
Waveguide
modified locally
axicon formed HOFI.
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Start-to-End Simulation Framework
For Studying Multi-GeV Electron Acceleration from Optical Plasma Sources

Tuesday @ Now, Sala Elena — Maxence Thévenet
“Mainstreaming Start-to-End Realistic Simulations in Plasma

Bayesian Optimization
Plasma source formation + injection / acceleration

Accelerator Research”

Neutral Gas Profile
Simulation of Gas Cell

Laser Pulse Shaping
Plasma tailoring beams

lonization
Plasma density & temp.

LASY-org/lasy

LASY_

\nsys
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& analytics

Wednesday @ Poster Session — Rob Shalloo
“LASY — Laser Manipulation Made Easy”

https://github.com/LASY-org/LASY
https://github.com/ECP-WarpX/WarpX

Plasma Acceleration
Injection and acceleration

/

fopic/fbpic
Spectral, quasi-3D Particle-In-Cell code, for CPU

Hydrodynamics
Custom module

COMSOL.
MULTIPHYSICSE

3

optimas-org/
optimas

Laser Handshake

https://github.com/fbpic/tbpic
https://github.com/AngelFP/Wake-T
https://github.com/optimas-org/optimas

DESY. | Controlled Injection in a Channel-Guided LPA | Rob Shalloo | Wed. 23@ September 2025 |

Open Source

[1] M. Mewes et al., Phys Rev Res. 5 033112 (2023)
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Creating a Constricted Wavegquide
Performed with an experimentally benchmarked hydro code [

COMSOL.
MULTIPHYSICS®
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o 2 ° Tunability
° @ ° High-level of process control
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Laser focusing geometry
Laser wavelength
Gas species
Evolution timescales
etc.
fs ps ns Hs
Electron Injection structure Waveguide
Acceleration tailoring formation

[1] M. Mewes et al., Phys Rev Res. 5 033112 (2023)
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Injection in a Constricted Wavegquide
Localized injection within the waveguide constriction
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Injection facilitated by elongation of bubble as laser
leaves constricted plasma region

- Laser and plasma profile evolving during injection

- Dynamics complex and competing effects are difficult
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Why Does the Bubble Elongate?

Isolating contributions of laser pulse and plasma profile to bubble elongation

step

Laser

Finite Difference Approach Based on Quasistatic PIC 72 \/ U U
Cn n-l—l

- LASY used to isolate laser pulse at each FBPIC time /
G

: . 0z
- Plasma response for consecutive plasma profiles Ln-1 channel £
calculated using Wake-T
Bubble
Length
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increasing time steps
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Why Does the Bubble Elongate?
Investigating the Speed of the Back of the Plasma Bubble
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Generation of High-Quality Electron Beams
With a ~0.4J Laser System
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Generation of High-Quality Electron Beams
With a ~1.5J Laser System
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Summary

_.'/
LINACII
450 MeV

Based on waveguide constriction from colliding shocks o
Injection occurs due to rapidly evolving waveguide structure LRASImlation
Tunability enabled through different timescales of key processes

Injection
channel

PETRA IV
Hydrodynamic structure formation

Injection and acceleration of high-quality beams up to ~GeV level

Implications / Outlook

- Charge is modest, but could be enhanced with addition
of dopant
Check out our Paper on arXiv Radial density profile should be considered as part of
injection dynamics eg. design of future PETRA IV
Plasma Injector

R. J. Shalloo et al., arXiv 2410.15937 (2024)
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