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Self-aligned Compton scattering at ELI-NP and ZEUS

All-optical Compton scattering

ELI NP: Self-reflecting Compton scattering
Gerstmayr et al., arXiv:2506.23718

ZEUS: Self-reflecting Compton scattering with density tailoring
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All-optical Compton scattering
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Inverse Compton scattering is a compact source of ω-rays

↭ Advantages:
↭ Length and time scales are matched

and synchronised
↭ Co-location of accelerator and

intense laser pulses
↭ Challenges:

↭ Reproducibility of source
↭ Spatio-temporal overlap

(drift and jitter)
↭ Beam quality
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Self-reflecting schemes enable higher collision rates

↭ Plasma mirror reflects driving
laser pulse back onto electron beam

↭ High collision rate as self aligned
(in time and space)

↭ Requires only one laser beam
→ more accessible

↭ No independent control of scattering
beam (typically lower intensities)

↭ Consider debris and back-reflection

Ta Phuoc et al., Nat. Photon. 6 (2012)
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Examples of applications: Industry

Zilges et al., Prog. Part. Nucl. Phys 122 (2012); Quiter et al., PRC 86 (2012)
↭ Interrogation of hazardous materials (e.g. spent nuclear fuel)
↭ Transmutation of nuclear waste
↭ Imaging applications for high-Z materials
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Examples of applications: (Strong-field) QED
↭ Radiation Reaction

Blackburn, Rev. Mod. Plas. Phys. 5 (2020)

↭ QED Showers and Cascades

Blackburn et al., PRA 96 (2017)

↭ Photon-Photon scattering
Pike et al., Nat. Photon. 8 (2014)
Drebot et al., PRAB 20 (2017)
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Self-reflecting Compton scattering
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Self-reflecting Compton scattering at ELI-NP

↭ ↑E ↓ = 900 ± 30 MeV; ↑Q↓ = 0.9 ± 0.4 nC; see arXiv:2506.23718 for details
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Close-up of the diagnostics and interaction point
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Gas flow a!ects tape/laser reflection when close to the jet

↭ Determine safe working distance at low power to avoid harmful back-reflections
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Plasma mirror in action

↭ Reproducible reflections using tape drive (Scitech/CLF, UK)
↭ Occasional EMP issues resolved by maximising distance to gas nozzle
↭ Shots 1/40 s due to gate valve/to check tape spooled (can operate at 1 Hz)

Elias Gerstmayr, Queen’s University Belfast Compton scattering using self-reflection at ELI-NP 10/21



Tape ‘far’ away from gas nozzle (Compton suppressed)
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Moving closer to the jet
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Increasing gamma/Compton signal as we approach
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Significantly brighter gamma signal close to the jet
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Gamma signal increases when moving closer to jet

↭ Decrease in gamma yield consistent with ICS
↭ Simple fit of Gaussian waist consistent with input parameters
↭ Brems (kapton) and betatron signal negligible at close distance
↭ Divergence of photon beam is ↔ 4.0 ± 0.5 mrad FWHM
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Shot-to-shot variations in performance (close shots)

↭ Forward fitting using dNω/dωω ↔ ω→2/3e→εω/εcrit

↭ Average photon energy is few MeV (ωcrit/3)
↭ Combine charge and brems calibration with ωcrit for Nph

↭ Outlier: potentially variations in laser/plasma properties
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Photon source in context

↭ Combine measured ωcrit ,Nph and ε, with simulated source size
↭ Source not fully optimised yet (energy, divergence...)
↭ Photons in bandwidth and average flux might be more important than brightness
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Simple model describes ICS yield for a given laser energy

↭ Assuming matched bubble regime (Lu et al. PRSTAB 10 (2007))
↭ Improve e!ciency by enhancing a0, e.g. density tailoring → arXiv:2408.13238
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ZEUS Experiment to tailor plasma density and increase scattering intensity
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All-optical, self-aligned Compton source at ELI-NP and ZEUS
↭ High yield nonlinear inverse Compton scattering at ELI-NP
↭ Self-guiding at constant a0 in LWFA gives rise to simple scaling law
↭ Density tailoring can improve e!ciency by increasing a0 at the interaction
↭ see arXiv:2506.23718 for details
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Backup slides
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Simulations to check consistency of results

↭ FBPIC using measured density profile
(o"ine) and focal spot to match
electron beam performance

↭ Predicted intensity a0 ↔ 2
(a0 ↔ 4 in plasma)

↭ Electron beam size ↔ 5µm
↭ Significant redshifting ↑ϑ↓ ↗ 1µm
↭ Ptarmigan simulations (Russell)

match a0 < 2
↭ A lot of variables,

need more diagnostics
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