Experimental Measurement of the Saturation Length of Self-Modulation Instability
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Abstract Self-Modulation (SM)

A long, narrow bunch propagating in plasma is subject to the self-modulation (SM) PLAS MA OFF
instability, a transverse process. We study the evolution of SM along the plasma
by changing the length of plasma over which the bunch propagates. In particular,
we observe the effect of the transverse wakefields on the bunch by measuring the
size of the halo of defocused particles at a screen downstream from the plasma.
We observe that the maximum radius of the halo changes with beam and plasma
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parameters. Numerical simulation results suggest that there is a correlation oy :

between the plasma length for which the halo is fully formed, and the plasma Imt'_al ‘ waketflelds ,mogmatﬁs N
length for which the SM process saturates. We study this halo formation for wakefields acton (mICI’O uncnes
different parameters, and compare it with numerical simulations results. bunch halo)
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