# Laser-Driven Very High Energy Electrons for Femtosecond-Scale Irradiation of In Vitro Cell Lines

H. Maguire<sup>1</sup>, C. McAnespie<sup>1</sup>, P. Chaudhary<sup>2</sup>, S.W.Botchway<sup>3</sup>, O. Finlay<sup>3</sup>, E. Gerstmayr<sup>1</sup>, G. Nersisyan<sup>1</sup>, C. McDonnell<sup>4</sup>, K. M. Prise<sup>4</sup>, G. Schettino<sup>2</sup>, G. Sarri<sup>1</sup>

- School of Mathematics and Physics, Queen's University Belfast , BT7 1NN, Belfast, UK
- Radiotherapy and Dosimetry Group, National Physical Laboratory, Middlesex, TW11 0LW, UK
- Central Laser Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, Oxford, UK
- <sup>4</sup>Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast , BT7 1NN, Belfast, UK









Laser-driven plasma accelerators (LPAs) achieve accelerating gradients >10s of GV/m offering a compact and cost-effective alternative to conventional RF accelerators for VHEE generation.

Very high energy electrons (VHEEs) can:

- achieve excellent dose conformity and deep penetration depths [1]
- enhance the sparing of critical structures while providing similar/superior target coverage than photons
- show reduced susceptibility tissue inhomogeneities [2].

Proof-of-principle experiments, using laser-driven electron sources capable of single-shot, Gy-scale irradiation at unprecedented dose rates in the range of **10**<sup>10</sup> - **10**<sup>13</sup> **Gyls**, demonstrated:

- significant increases in RBE following femtosecond VHEE irradiation [3], and
- no significant differences in RBE following picosecond electron beam irradiation [4],

when compared with conventional sources.

We present the characterisation of two laserdriven, ultra-short electron sources and the radiation response of seven in vitro cell lines.

Two normal (AGO1522D, RPE-1) and five cancerous cell lines (E2, MCF7, DU145, HeLa S3, H460) are presented.

Results were compared to a conventional x-ray source (2.4Gy/min) at the PGJCCR, QUB.

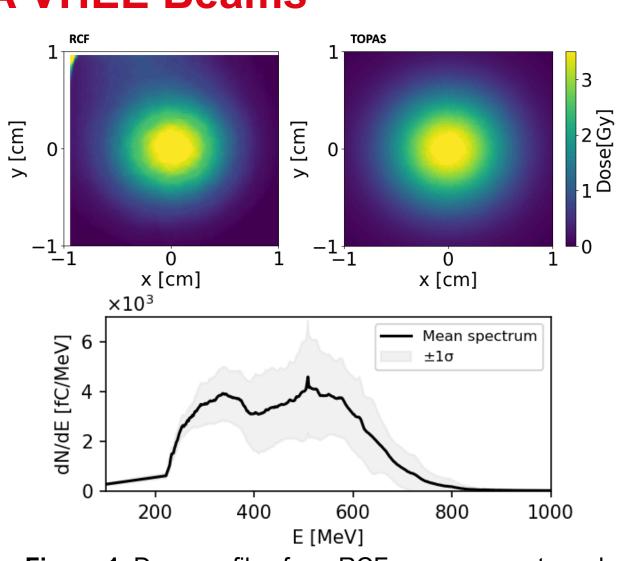
## **LWFA VHEE Beams**

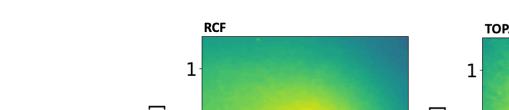
#### **Laser parameters:**

- $E_1 = 10 J$
- $\tau_{\text{FWHM}}$  = 45 fs
- $a_0 = 1.4 \pm 0.1$
- $n_e \sim 3 \times 10^{18} \text{ cm}^3$

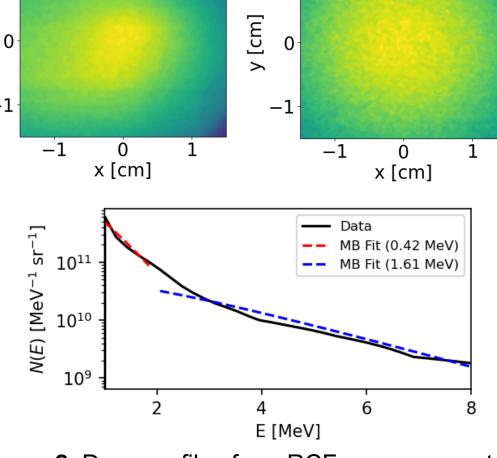
## e beam characteristics:

- VHEE beams (100-800 MeV)
- $\tau_h = \sim 150 \text{ fs}$
- $\tilde{Q} = 1.8 \pm 0.4 \text{ nC}$
- Low divergence (1.4 ± 0.4 mrad)
- >3 Gy per shot over cm<sup>2</sup> areas
- Dose rates >10<sup>13</sup> Gy/s





Figure 1. Dose profiles from RCF measurements and corresponding TOPAS simulations. Angularly integrated energy spectra of 10 consecutive shots.

#### Laser parameters:


- $E_L = 8-10 J$
- $\tau_{\text{FWHM}}$  = 0.8 ps
- $a_0 = 4.1 \pm 0.2$
- 25µm Au

#### e beam characteristics:

- 1-8MeV (T = 1.6 MeV)
- $\tau_b = \sim 10-20 ps$
- $N_e = \sim 2.9 \times 10^{11}$ • Large divergence (0.56 rad)
- >8 Gy per shot over cm<sup>2</sup> areas
- Dose rates >10<sup>10</sup> Gy/s



**Laser-Solid E Beams** 



Dose[Gy]

Figure 2. Dose profiles from RCF measurements and corresponding TOPAS simulations. Angularly integrated energy spectra with Maxwell-Boltzmann fits.

## Clonogenic Assays

Clonogenic assays measured the cell survival fraction following irradiation, with results modelled using the linear-quadratic (LQ) equation:

$$SF = \exp - (\alpha D + \beta D^2)$$

Relative biological effectiveness (RBE) at 50% survival was calculated relative to a conventional xray (CONV) source:

$$RBE(50) = \frac{D_{50} \ of \ CONV}{D_{50} \ of \ Electron \ Source}$$

LQ model parameters and RBE calculations were obtained using **MCMC sampling** with emcee. Statistical analysis was performed using Wilcoxon Rank-Sum test;

ns, not significant, \*p < 0.05, \*\*p < 0.01.

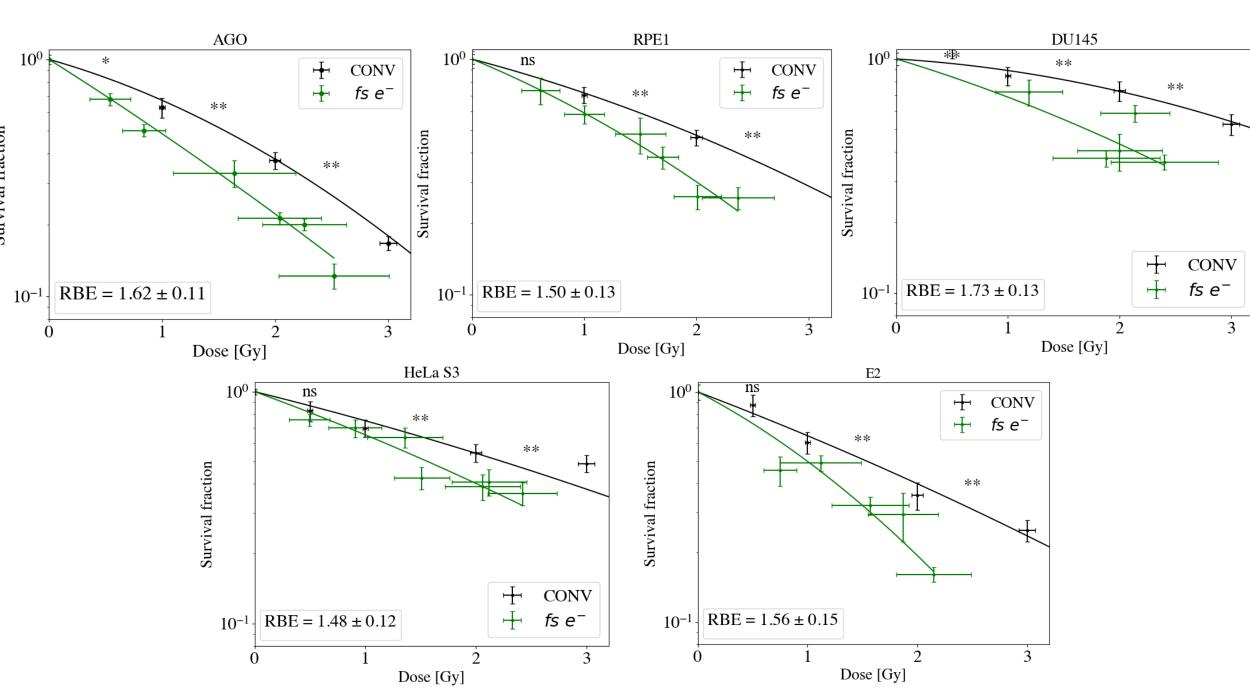



Figure 3. Clonogenic assays. Survival curves fitted with the LQ model are shown for AGO1522D, RPE-1, DU145, HeLa S3 and E2.

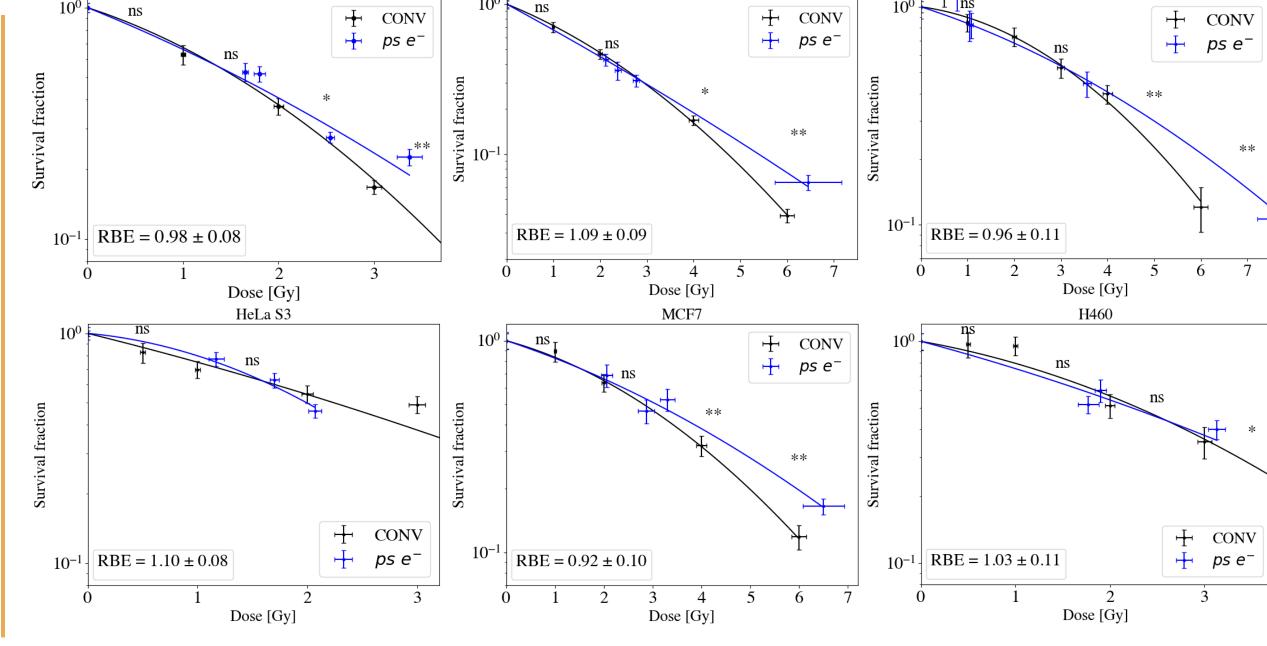
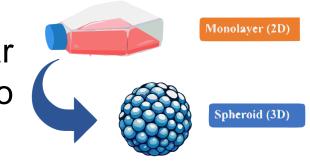



Figure 4. Clonogenic assays. Survival curves fitted with the LQ model are shown for AGO1522D, RPE-1, DU145, HeLa S3, MCF7, H460.


## Conclusions

- A significant increase in RBE was observed for all cell lines following irradiation with fs VHEE beams
- No difference in RBE was observed following irradiation with ps electron beams at low dose
  - At higher doses, a FLASH-like sparing effect was shown for 4/6 cell lines, indicated as significant increases in SF
  - First demonstration of FLASH-like effects at dose-rates >10<sup>10</sup> Gy/s
- Dose profiles from RCFs and TOPAS (Geant4) simulations demonstrated good transverse and longitudinal dose uniformity across the cell regions

## **Next Steps**

## 3D Spheroid Models

Spheroids mimic the 3D structure and cellular environment of tumors advancing towards future in vivo applications



- **Dosimetry** of ultra-short electron beams is not trivial:
  - Plane-parallel ionisation chambers experience charge collection inefficiency at high dose-rates [5]
  - RCFs are suitable for high dose-rate VHEE dosimetry but fail to provide dose measurements in real-time [6]

## References

[1]A. Hart et al. (2024). doi: 10.1109/JSEN.2024.3353190 [2] B. Palma et al. (2015). doi: 10.1118/1.4925419 [3] C. A. McAnespie et al. (2024) <u>doi: 10.1088/1361-6560/adec36</u>

[4] C. A. McAnespie et al. (2025) doi: 10.1103/PhysRevE.110.035204 [5] M. McManus et al. (2020). doi: 10.1038/s41598-020-65819-y [6] A. Subiel et al. (2017). doi: 10.1016/j.ejmp.2017.04.029

ACKNOWLEDGEMENT - This poster presentation has received support from the European Union's Horizon 2020 Research and Innovation programme under **Agreement No 101004730.** 



