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Abstract Motivation

Ultra-short laser pulses are essential to resolve femtosecond-timescale dynamics in plasma-based Ultra-short laser pulses with pulse durations of a few femtoseconds are required to resolve processes on

particle accelerators. timescales of tens of femtoseconds, such as the structure and motion of plasma waves in relativistic
laser-plasma interactions.

Here we present the process behind a high-intensity hollow-core beam line designed to spectrally Resolving a plasma wave requires exposure times of t, 4, < Apiasma

broaden an input pulse spectrum by a factor 5.58, with an output pulse energy of ~2 mJ. 2*Co

Our design enables Fourier limited compression of the pulse to ~6 fs and will be utilized to take crisp : "
shadowgrams of plasma wave sub-structures in LWFAs and PWFAs and furthermore used as a , Propagétion orsasy

" : X3 il | Object size ~10umM — t,, 4, ~16fs
photocathode injector laser in a PWFA. JEEELLECCCL L C |c|\

Figure 1: An exemplary shadowgram, indicating the
size of the first plasma wave

The proposed experimental arrangement is based on the mechanism of self-phase modulation, which
requires an intense, short laser pulse and a material with strong third-order nonlinearity. -160 -140 -120 -100 -80 -60 -40

We plan to use noble gases, which are well suited to act as nonlinear media with their comparatively  REVGHAHm) . ) L .
L . : S A short pulse means a wide spectral range, though typical Ti:Sa lasers are limited in their spectral range.
high ionization levels and sufficiently large nonlinear refractive indices.

The required intensity for self-phase modulation is achieved by focusing a pre-compressed laser pulse Self phase modulation is exploited to widen the spectral range of laser pulses and furhter reduce the

. L. L : : Fourier limited pulse duration.
down to a smaller beam diameter. A hollow-core fiber is used to maintain the intensity over a longer " . . :
. : : In addition to the short pulse duration, a clean pulse profile is required to ensure a good contrast on the
distance and clean the pulse profile for later use in shadowgraphy.

shadowgrams.
Since hollow-core fibers act as spatial filters, they are preferred over other methods, such as
gas-filled Heriott cells or thin plates.

Challenges in designing such a hollow-core fiber beam line are spatial limitations, ionization de-
focusing, laser induced damages on optics and self-focusing effects due to the high pulse intensity.

Self phase modulation Gaussian pulses and hollow-core fibers

= Direct consequence of the intensity dependent refractive index n = ny + n,I = Pure Gaussian TEM modes can not exist inside the fiber,

| o - electronic hybrid modes are excited instead 4 ( [ 1 Jo(Hm ) exp (_r_i)dr)z
* Maximum phase shift given by Agyqy = = IoLess ¥ = Coupling efficiency of excitation depends on focal spot size = " a N
’ of laser and inner radius of fiber a
= Effective length of the nonlinear process depends on
inner radius of fiber a, the fiber materials and the Legr =
nonlinear mediums refractive index
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= Spectral broadening factor is F = 22out — \/1 + %Aquaxz =

Win [2]

= Spectral broadening imprints positive chirp on the pulse
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Figure 2: Simplified visualization of the physical process during self phase modulation. Effective lenaths for different radii
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Optics get damaged or B-Integral is too large For a Gaussian pulse with a FWHM pulse duration
4 n t ! | I \ and a full pulse energy E )
e 1 — exp | — («DADK dt’ ) © Check damage Check B-Integral in Determine fiber
i . thresholds cﬁ‘ the_window_, find a l radius for most
Following the ADK model of ionisation rates sensitive optics S”'tatg;ﬁ“;:dw inﬁg‘f&”gﬁ”ﬂgge The design is an iterative process with three crucial check-points:
_ via tunneling ionisation ) : * The nonlinear medium is not ionised to prevent ionisation defocusing
and energy loss by ionizing
- « The pulse fluence is always lower than the optical damage threshold of the
Calculate pulse fluence at the position of the o L nol used optics suc_;h as mirrors, windows and the fiber its_elf
sensitive optical component and compare with B=—. f —dl <1 * The B-Int_egral IS less or equal to 1 to ensure t_hat nonlinear effects such as
the scaled damage threshold of the optic A0 o TNo self focusing and beam breakdown are negligible
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