
➢Background: Plasma wakefield acceleration (PWFA) has gained global attention for the 

achievable ultra-high accelerating gradients [1], which will drastically reduce the footprint, 

price, and carbon load of accelerators to be used for medical applications, free electron 

lasers (FELs), and future high-energy physics experiments [2]. 

➢Problem: Gaussian profile of the plasma density is more practical than the linear plasma 

ramp [3,4]. No fitting model has been built so far for prediction of the optimal beam quality.

➢Facility: The Compact Linear Accelerator for Research and Applications (CLARA) at the 

Daresbury Laboratory, capable of producing 250-MeV electron bunches. Recently, a new 

beamline attached to CLARA, the Full Energy Beam Exploitation (FEBE) facility, has been 

designed to provide ultra-short and low-emittance electron bunches [5]. 

➢ Investigations: Here we numerically investigated PWFA with a two-bunch configuration, 

i.e., the driver/witness bunch, at FEBE to double the energy of the witness bunch. The up-

ramp plasma density profile was optimised based on machine learning. We trained the 

surrogate model for tolerance and sensitivity analyses.

➢Research goals:

• Obtain the optimal beam quality.

• Review beam quality stability around the optimal parameter point.
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2. Schematic of PWFA Experiments at CLARA FEBE

4. Simulation Parameter Settings
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Parameters Driver 10 pC  witness

Beam density (cm-3)

Charge (pC)

Energy (MeV)

Bunch length (μm)

Transverse size (μm)

Energy spread (%)

Emittance (mm mrad)

1.19×1015

150

250

10

50

1

5

1.98×1015

10

250

10

10

1

5

5. Structure of the Neural Network

1. Introduction

3. Particle-in-cell Code

Fourier-Bessel particle-in-cell (FBPIC) [6]

➢ Quasi-3D cylindrical coordinate

➢ Maxwell 's equation solver in the spectral space

➢ GPU-based code running in the STFC SCARF cluster

➢ Avoid spurious numerical dispersion

PIC loop

➢ Driver/witness configuration is generated by the mask technology.

➢ The discharge method is planned to form the ramp plasma density profile.

➢ Diagnostics include the energy spectrometer, quadrupole scanner, and so on.

Gaussian up-ramp [3] & down-ramp profiles coupled:
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7. Bayesian optimisation and Final Quality

8. Robustness and Parameter Sensitivity

Mean Absolute Error (MAE): 

0.006 pC (0.063%), 0.015% (0.290%), 0.043 mm mrad (1.366%)
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Optimal parameters (predictions):

zstart = 2.49 cm,     Q  = 9.52 pC (9.54)

nmax = 4.24×1016 /cm3,      σE = 4.75% (4.74)

Lramp = 1.19 cm,    εN = 3.06 mm mrad (2.95) 

Quality = 0.655 (0.682)
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Parameter Variation:

zstart = 2.24 – 2.74 cm (±10%),   nmax = 4.03 – 4.45×1016 /cm3 (±5%)

Lramp = 1.09 – 1.33 cm (±10%)

Total parameters: 32843 

6. Model Training and Evaluation 
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➢ A total of 1000 simulations were performed, with 

20% reserved for validation.

➢ The training loss decreases rapidly within the 

first 10 epochs.

➢ The training curve remains smooth and stable 

throughout.

➢ The validation curve closely follows the training 

curve, with no signs of significant overfitting.

Tolerance analysis (1000 LHS samples):

Q : mean = 9.514 (-0.27%), σ = 0.122 (1.28%)

σE : mean = 4.765 (0.53%), σ = 0.095 (1.99%)

εN : mean = 2.977 (0.91%),, σ = 0.031 (1.04%)

Beam quality definition [7]:

Sobol sensitivity analysis (218 LHS samples):

➢ Main effects dominate, explaining 87% of the variance: 

➢ Sensitivity ranking: Lramp > zstart > nmax. 

➢ Pairwise interactions account for ~12% (~91% of total interaction effects).

➢ Higher-order interactions contribute < 2%.

Parameter Variation:

zstart = 2.0 – 5.0 cm,   nmax = 3.5 – 4.5×1016 /cm3,  Lramp = 0.5 – 5.0 cm
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Summary 

Final quality for energy doubling: 

Non-ML: Q  = 8.60 pC, σE = 5.77%, εN = 6.50 mm mrad, Quality = 0.229

ML: Q = 9.54 pC, σE = 5.84%, εN = 2.74 mm mrad, Quality = 0.596 (160% higher)

We performed machine learning–based optimisation of PWFA for the energy-doubling 

scheme at CLARA FEBE. The surrogate model achieved mean absolute percentage errors 

below 2%. Using Bayesian optimisation, we identified the optimal parameters and obtained 

a final-energy beam quality of 0.596, representing a 160% improvement compared with the 

non-ML baseline. Tolerance analysis confirmed that the mean beam quality remains within 

1%, with deviations below 2%. Sensitivity studies further revealed that the main effects 

dominate the variance, with the sensitivity ranking following Lramp > zstart > nmax.


	Slide 1

