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1. Introduction

» Background: Plasma wakefield acceleration (PWFA) has gained global attention for the
achievable ultra-high accelerating gradients [1], which will drastically reduce the footprint,
price, and carbon load of accelerators to be used for medical applications, free electron
lasers (FELs), and future high-energy physics experiments [2].

» Problem: Gaussian profile of the plasma density is more practical than the linear plasma
ramp [3,4]. No fitting model has been built so far for prediction of the optimal beam quality.

» Facility: The Compact Linear Accelerator for Research and Applications (CLARA) at the
Daresbury Laboratory, capable of producing 250-MeV electron bunches. Recently, a new
beamline attached to CLARA, the Full Energy Beam Exploitation (FEBE) facility, has been
designed to provide ultra-short and low-emittance electron bunches [3].

» Investigations: Here we numerically investigated PWFA with a two-bunch configuration,
l.e., the driver/witness bunch, at FEBE to double the energy of the witness bunch. The up-
ramp plasma density profile was optimised based on machine learning. We trained the
surrogate model for tolerance and sensitivity analyses.

» Research goals:

« Obtain the optimal beam quality.

* Review beam quality stability around the optimal parameter point.

2. Schematic of PWFA Experiments at CLARA FEBE

» Driver/witness configuration is generated by the mask technology.
» The discharge method is planned to form the ramp plasma density profile.
» Diagnostics include the energy spectrometer, quadrupole scanner, and so on.
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3. Particle-in-cell Code

_ ) ) Update 5, and 3, [ PIC loop }
Fourier-Bessel particle-in-cell (FBPIC) [6] o
> Quasi-3D cylindrical coordinate /| — B)Ch -
> Maxwell's equation solver in the spectral space (e 3 fomh; Y ]
» GPU-based code running in the STFC SCAREF cluster 1;:; n
» Avoid spurious numerical dispersion
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4. Simulation Parameter Settings

Gaussian up-ramp [3] & down-ramp profiles coupled:

P j‘;j E<Lﬂ3>= Mithax Parameters Driver 10 pC witness
40 & Beam density (cm=3)  1.19x1015 1.98x107°
X :2 Charge (pC) 150 10
234 | | Energy (MeV) 250 250
8 321t Bunch length (um) 10 10
g 301 1/ Transverse size (um) 50 10
2 2.8 .
Y I L R Energy spread (%) 1 1
0 2 4 6 8 10 12 14 16 18 20 Emittance (mm mrad) 5

Plasma length (cm)

1, (2) = ngy + (M — nlow)exp(—(z —Z e — Lo )2/202), where o = Lramp/\/Zln(l/g)

5. Structure of the Neural Network

Layer (Type) Output Shape Param# ; l?elll:ll'l(:ns) (usR.feLl.?ons)(afﬁiﬁgms) (nl;z]l;rlins) o‘ﬂé‘.?ib'f,s)
Input Layer (Dense) (None, 3) 0

Hidden Layer 1 (Dense) (None, 128) 512

RelLU Activation 1 (ReLU) (None, 128) 0 6?’,‘9

Hidden Layer 2 (Dense) (None, 64) 8256 ,ﬁfg

RelLU Activation 2 (RelLU) (None, 64) 0

Hidden Layer 3 (Dense) (None, 32) 2080

RelLU Activation 3 (RelLU) (None, 32) 0

Output Layer (Dense) (None, 3) 99 : : E

Total parameters: 32843

» A total of 1000 simulations were performed, with —— Training Loss
20% reserved for validation. T Validation Loss
» The training loss decreases rapidly within the 2 0.6
first 10 epochs. 2 "
» The training curve remains smooth and stable 5
= 021 |
throughout. k
» The validation curve closely follows the training 001 | , ,
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Mean Absolute Error (MAE):
0.006 pC (0.063%), 0.015% (0.290%), 0.043 mm mrad (1.366%)

Beam quality definition [7]: Bayesian Optimisation Convergerce
C I ) W"
Quality = Q[p ] %‘0.65- |
Oy russ | Y0 €y [ mm mrad | )
g 0.60 - .
Optimal parameters (predictions): 3 R gzg?:a??;hgfar
Zon=249cm, Q =9.52pC (9.54) Z 055 | '{
Noay = 4.24X10%6 Jcm3,  o0-=4.75% (4.74) £ 0501 | it points=}o
Lamp =1.19 cm, &y =3.06 mm mrad (2.95) N | | | |
25
Quality = 0.655 (0.682) -

Final quality for energy doubling:
Non-ML: Q =8.60 pC, a-=15.77%, &y = 6.50 mm mrad, Quality = 0.229
ML: Q =9.54 pC, 0=5.84%, &= 2.74 mm mrad, Quality = 0.596 (160% higher)

Parameter Variation:
Zgort = 2.24 —2.74 cm (=10%), N, =4.03 —4.45X10"% /cm3 (£5%)
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Tolerance analysis (1000 LHS samples):

Q : mean = 9.514 (-0.27%), 0 = 0.122 (1.28%)
og : mean =4.765 (0.53%), 0 = 0.095 (1.99%) ,
£, : mean = 2.977 (0.91%),, 0 = 0.031 (1.04%) - METMITTHIHE
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Parameter Variation:

Zga =2.0-5.0cm, ng,, =3.5-4.5X10"/cm?, L., =0.5-5.0cm
Sobol sensitivity analysis (2'® LHS samples):

» Main effects dominate, explaining 87% of the variance:

> Sensitivity ranking: L., > Zgiart > Nmax

» Pairwise interactions account for ~12% (~91% of total interaction effects).
» Higher-order interactions contribute < 2%.

Parameter Sensitivity S2 Interaction Heatmap (95% CI)
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Summary
We performed machine learning—based optimisation of PWFA for the energy-doubling

scheme at CLARA FEBE. The surrogate model achieved mean absolute percentage errors
below 2%. Using Bayesian optimisation, we identified the optimal parameters and obtained
a final-energy beam quality of 0.596, representing a 160% improvement compared with the
non-ML baseline. Tolerance analysis confirmed that the mean beam quality remains within
1%, with deviations below 2%. Sensitivity studies further revealed that the main effects
dominate the variance, with the sensitivity ranking following L .., > Zsat > Niyax-
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