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Introduction
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Carbon nanotubes (CNTs) and graphene layers are unique for their size, shape, RNt RF cavities [ Plasmonic wakefield acceleration ]
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iii) lower dechannelling rate —— O To properly excite wakefields laser or beam driving
(iv) less disruptive effects such as filamentation and collisions — Pl e lerat — parameters need to be in the time and space scale of the
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« Consequently, CNTs and graphene layers are considered robust candidates for ~mm ~HD @ =1 P

Longitudinal electric field ~100 GV/m ~100 MV/m

solid-state or plasmonic wakefield acceleration.
Travelling wave (TW) Standing Wave (SW) or TW

Theoretical background

A
. - The electronic excitations on the surfaces can be described * The electric potential is given by & = ”r_Qr i T Ping, Where
Linearized hydrodynamic model (LHM) 5 ) o by two differential equations: ’
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* In this theory [4-11], carbon nanostructures surfaces are 7 O [ A = (i) the continuity equation n,(r;, t): perturbed surface density D4 (r,t) = _z ] dzrjM
modelled as an infinitesimally thin and infinitely long shells on; (1, t) 4V u-(r- t) — 0  W(rt):velocity of the plasma 7 Ir —
with uniform surface density n,. These electrons are \\\ ot A V; differentiates only tangentially to the jth surface e ootential 0 o the perturbation of the elect
- - is the potential resulting from the perturbation of the electron
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Results
Carbon nanotubes | Graphene layers
PIC simulations LA PIC simulations ”
. L . ! - .
 The Fourier—Bessel Particle-in-Cell (FBPIC) code [13] is used to perform the Z—1 Wy 5 . Warpx [14] has been chosen to perform the simulations of the 7
simulations using a cylindrical CNT hollow plasma channel model employing o= graphene layers .
2D radial grids - Graphene layers are modelled as layers filled with a uniformly | Q
* This code is based on a collisionless fluid model which does not take into ) \_3\] distributed, pre-ionized cold plasma of carbon ions and electrons L i _g—_'(;"__;;n; _________________________ i
account the solid-state properties related to the ionic lattice \/ + Graphene layers will be centered at plane y = y; with a wall thickness e B
« We define a hollow plasma channel model with inner radius r;,, and wall w, and a volumetric density n; = ny/w; in order to ensure that the separation

thickness w, with a volumetric density n, = 1028 m~3 of free electrons within - 3w

_ _ number of free electrons within the jth layer with surface density n, =
this region

1.53 x 10%° m?2in the LHM is equal to the number of free electrons in
the wall thickness w;

« We will consider a Gaussian proton beam as a driver, with o, = 0, = 0, =3 nm, and charge @ = 1000e travelling
between the graphene layers

« The simulations span a total duration of 9.5 fs, which is sufficient for wakefield excitation to occur

» We will consider a bi-Gaussian beam driver, with ¢, = g, = 3.33 nm, and charge Q, = —44 fC with v - ¢

Comparison

We will assume that the number of free electrons in the cylindrical surface of radius a = r;,, and in the wall
thickness w; of the hollow plasma model is the same, obtaining the expression:
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We define the plasma wavelength 1, = % where w,, = \/eZnV/SOme is the plasma frequency
p
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- There is a qualitatively good agreement in the amplitudes, in particular, for the smaller wall thickness w; = 0.14,, S _EI{CM 1
which is the most similar case of the theoretical model. The agreement is much better if we use an effective § e PIC: w; — 3 nm
density that takes into account that not all electrons in the wall thickness excite the wakefield effectively g . | PG w =5
. ; ; -5 -50 ; ; ' 5 = 7 0.1 0.2 0.3 0.4 0.5
-150 -100 -50 0 W, (GV/m) -150 -100 -50 0 W, (GV/m) v/c

¢ (nm) ¢ (nm)

Discussion + * Ingeneral, there is a good agreement between the PIC simulations and the linearized hydrodynamic model

The discrepancies obtained between the linearized hydrodynamic model and the PIC simulations can be explained due to the differences between both approximations, such as:

» We are comparing a 3D region with free electrons in PIC simulations with 2D surfaces in the linearized hydrodynamic model

» The solid-state properties cannot be taken into account in PIC codes, whereas these properties may be modelled with the parameters «a, 8, and y in the linearized hydrodynamic model
* The electrons and carbon ions comprising the CNT can move in 3D in PIC simulations, whereas they are assumed to be confined over the surface in the linearized hydrodynamic model
* The driver interacts with the surrounding medium (losing energy) in PIC codes, whereas in the linearized hydrodynamic model we assume a constant velocity

* The size of the driver beam in the PIC simulations is not a point-like charge as assumed in the linearized hydrodynamic model

Conclusions and forthcoming work

« We have compared the excited wakefields in carbon nanostructures using the linearized hydrodynamic model and PIC simulations

« The amplitude of the longitudinal wakefield follows a similar trend in the linearized hydrodynamic model and PIC simulations

« The agreement in the amplitude of the wakefield in CNTs is much better if we consider an effective density

» The linearized hydrodynamic model can be used to obtain an estimation of the amplitude of the wakefield in hollow plasmas with small wall thickness instead of performing time-consuming PIC simulations
* Further investigations employing a different approximation to relate the surface and volumetric density and scanning in other key parameters are ongoing
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