SVT activities

G. Contin, L. Gonella – UniTs, INFN ePIC Trieste meeting 13 March 2025

ePIC Silicon Vertex Tracker

EIC physics requirements on charged-particle tracking and vertexing are stringent,

They drive the need for a well integrated, large acceptance, high granularity, and lowmass tracking and vertexing subsystem,

and drive the choice for a new generation MAPS technology — based off the ALICE-ITS3 development.

-	
IN	FN
	TRIESTE

	Momentum Resolution	Spatial Resolution
Backward (-3.5 to -2.5)	~ 0.10%×p□ 2.0%	~ 30/p⊤ µm □ 40 µm
Backward (-2.5 to -1.0)	~ 0.05%×p□ 1.0%	~ 30/p⊤ µm □ 20 µm
Barrel (-1.0 to 1.0)	~ 0.05%×p□ 0.5%	~ 20/p⊤ µm 🛛 5 µm
Forward (1.0 to 2.5)	~ 0.05%×p□ 1.0%	~ 30/p⊤ µm □ 20 µm
Forward (2.5 to 3.5)	~ 0.10%×p⊡ 2.0%	~ 30/p⊤ µm □ 40 µm

ePIC Silicon Vertex Tracker

• Inner Barrel (IB)

- Three layers, L0, L1, L2,
- Radii of 36, 41, 120 mm
- Length of 27 cm

INFN

- X/X₀ ~ 0.05% per layer
- Curved, thinned, wafer-scale sensor (ITS3),
- Approx. 20µm pixel pitch
- Outer Barrel (OB)
- Two layers, L3, L4
- Radii of 27 and 42 cm
- X/X₀ ~0.25% and ~0.55%
- · More conventional structure w. staves
- Sensor derived from IB sensor
- Electron/Hadron Endcaps (EE, HE)
- Two arrays with five disks
- X/X₀ ~0.25% per disk
- More conventional structure
- · Sensor derived from IB sensor; common with OB

• Lengths for L2—L4 increase so as to project back to z = 0; disk radii adjust accordingly

SVT Inner Barrel

- SVT IB will use ALICE ITS3 sensor, MOSAIX
- ITS3 detector concept adapted to ITS3 geometry
 - Larger EIC beam pipe → larger layers radii; more sensors in each layer
 - Due to the beam pipe geometry, and the need for full disk acceptance services need to be routed along service cones → FPC design equivalent electrically to ITS3 one, but mechanically different, Alu instead of Cu technology

ER1 wafer

4

Qualification, test and production of the SVT IB FPCs

- Activity on SVT IB FPC:
 - Collaboration with Daresbury LAB and SVT WGs for FPC design adaptation from ITS3 version to the SVT constraints and characteristics
 - SVT FPC prototyping and qualification tests
 - Production quality control
- Existing expertise from ITS2 OB FPC:
 - Definition of production specifications
 - Vendor search and production tendering
 - Qualification tests
 - Final integration with power bus
 - Vendor search and quality assurance

FPC R&D in Trieste

- FPC signal integrity to verify 10 Gbps data transmission
 - S-Parameter measurement (VNA) and eye diagram (High speed scope), BERT (FPGA)
 - FPC bent to different radii
- Test structures to be received
 - ITS3 prototype FPC from CERN
 - Same electrical functionality as ePIC IB FPC; Cu traces
 - ePIC SVT L4 prototype FPC from Daresbury Lab
 - Al traces, ePIC IB preferred technology

ITS3 FPC test setup and interconnections

Sensor characterisation

- Characterisation of ITS3 sensor prototypes in the context of ALICE
 - MLR1: DPTS and APTS
 - ER1: babyMOSS
 - Efficiency, noise, power consumption, charge collection, spatial resolution, cluster size, energy response
- Plans:
 - Characterisation of (baby)MOSS, ER2 MOSAIX and final ITS3 sensor
 - **Specific studies for ePIC SVT** (spatial resolution, fake hit rate, tests in climate chamber, ...)

Generic R&D for EIC

Aerosol Jet Printing redistribution layers on MAPS

- In-silicon power distribution over long distances not yet validated
 - If stitching yield is sub-optimal for excessive voltage drop across the chip, a postprocessing of the sensor is needed (measurements are ongoing)
- Application of a Re-Distribution Layer (RDL) with Aerosol Jet Printing technique
 - Additional copper and polyamide layer(s) added to the wafer where needed
 - Trade-off between resistance and material budget
 - Aerosol Jet Printing (AJP) machine available at INFN TS UniTS:
 - \bullet 10 μm spatial resolution, on planar and bent substrate

Generic R&D for EIC

- AJP acquired in 2023 by the University through a 'large instrumentation call'
 - Additional funds from 'EIC Generic R&D Program' and MAECI-funded project
 - Interdisciplinary research (Physics, Engineering, Chemistry Departments)
- Ongoing work
 - Systematic studies to control the process
 - Several conductive and dielectric ink
 deposition campaigns
 - Deposition on silicon and glass
 - Mechanical and electrical tests
- Collaboration with LBNL for next round of EIC Generic R&D funding

