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Particle identification

What do we mean by “particle identification”?

→ Determine the mass of “stable” particles

    → Really stable particles:
        e, p, g, Fe, d...

- Lightest lepton, 
- Lightest baryon  
- Stable nuclei
- t >> universe life
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Particle identification

What do we mean by “particle identification”?

→ Determine the mass of “stable” particles

    → Really stable particles:
        e, p, g, Fe, d...

    → Almost stable particles:
        m, p, K, n (X, W…)

- Lightest particle of each flavour              
  content (uu+dd, us, uds, uss, sss)
- neutron (almost degenerate with the        
  proton)
- t = 10-10 – 103 s
  Travel cm~m in the detectors
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Particle identification

What do we mean by “particle identification”?

→ Determine the mass of “stable” particles

    → Really stable particles:
        e, p, g, Fe, d...

    → Almost stable particles:
        m, p, K, n (X, W…)

- Lightest particle of each flavour              
  content (uu+dd, us, uds, uss, sss)
- neutron (almost degenerate with the        
  proton)
- t = 10-10 – 103 s
  Travel cm~m in the detectors
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Particle identification

What do we mean by “particle identification”?

→ Determine the mass of “stable” particles

    
How can we do that?
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Particle identification

What do we mean by “particle identification”?

→ Determine the mass of “stable” particles

    
How can we do that?

→ Measure simultaneously (and independently!) b and p 
→ Observe the interaction with a material (CsI, Iron...)
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Umberto Tamponi - “The TOP counter of Belle II: status and first results” - RICH 2018

The Belle II detector

→ CP violation
→ Every sub-detector provides PID   
    information
    → dE/dx from Drift Chamber      
        and Vertex detector
    → Cherenkov signal from TOP    
        and ARICH
    → Shower shapes from the         
        calorimeter
    → Penetration depth from the     
        muon system
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PID by interaction

Muons almost 
only loose energy 
by dE/dx
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PID by interaction

Electrons radiate above 10 MeV!
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PID by interactions

Which particles can you identify by interaction?
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PID by interactions

Which particles can you identify by interaction?
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PID by velocity

How do you measure the velocity of a charged particle?
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PID by velocity

How do you measure the velocity of a charged particle?

→ dE/dx
→ Time-Of-Flight
→ Cherenkov effect
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Specific ionization
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Specific ionization
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Time of flight counters
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Time of flight counters

Alice RPC Belle scintillators
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Time of flight performaces



Threshold and Imaging Cherenkov counters
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Cherenkov detectors
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The theory:  a disclaimer

For this course I wanted to go 
more deeply into the theory, and I 
found myself in a deep, dark 
rabbit hole…

It turns out that the exact theory 
of the Cherenkov effect is neither 
easy, not immediate, nor 
straightforward. 

Also, I don’t have time so…
→ backup!
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Cherenkov radiation in a nutshell
Master formula nr. 1 : The radiation lays in a cone, whose aperture depends on b
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Cherenkov radiation in a nutshell

Master formula nr. 2: The Spectrum is smooth, in the visible but peaked in the violet 

Master formula nr. 1 : The radiation lays in a cone, whose aperture depends on b
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Cherenkov radiation in a nutshell

Master formula nr. 3: The radiation faint: O(100) photons per cm of water!! 

Master formula nr. 2: The Spectrum is smooth, in the visible but peaked in the violet 

Master formula nr. 1 : The radiation lays in a cone, whose aperture depends on b
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Let’s built a Cherenkov detector

What do you need to build a Cherenkov detector for PID?
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Let’s built a Cherenkov detector

A Cherenkov detector (for PID) has 4 components:

→ Radiator, where the Cherenkov effect happens 
→ An optics that collects and convey the Cherenkov photon to detection
→ A photomultiplier
→ A readout electronics
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Let’s built a Cherenkov detector

A Cherenkov detector (for PID) has 4 components:

→ Radiator, where the Cherenkov effect happens 
→ An optics that collects and convey the Cherenkov photon to detection
→ A photomultiplier
→ A readout electronics

Let’s assume you have:
→  one photomultiplier 
→  a beam of particles of p = 3 GeV. 
Some of them are pions, some of them are kaons. How do you decide when you 
have one and when you have the other?
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Choose your radiator
The easiest Cherenkov counter is a threshold counter

Aerogel: an value between 1. and 1.1
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Choose your radiator

Aerogel: an value between 1. and 1.1

Isobuthane seems to be our guy
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Choose your PMT
PMTs are a very broad topic
 → No time to really dig into it here (see Knoll, 4th edition, pp. 275 - 318)
 → For the moment, let’s assume we have a rather conventional PMT
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Dimension your detector
Assume we have a 15% average Q.E. between 300 nm and 500 nm

In our case:
z = 1
cosq  = 0.999542865

N = 0.6 photons / cm
signal ~ 0.1 photoelectrons / cm
→ your detector must be ~ 1 m long. 
    From now on, let’s assume 1 m
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Choose the PMT location

The Cherenkov light emitted by our particle project within a disk of ~ 9cm of radius at 
the end of your pipe full of isobuthane.
→ Where do we put our PMT?

→ We probably do not have a  
    6in PMT
→ We don’t want the beam to 
    drill a hole through the       
    PMT itself
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Choose the optics

The Cherenkov light emitted by our particle project within a disk of ~ 9cm of radius at 
the end of your pipe full of isobuthane.
→ Where do we put our PMT?

A spherical mirror focuses all 
the parallel rays in the same 
spot!
→ Which material do you use?
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Choose the optics

The Cherenkov light emitted by our particle project within a disk of ~ 9cm of radius at 
the end of your pipe full of isobuthane.
→ Where do we put our PMT?

A spherical mirror focuses all 
the parallel rays in the same 
spot!
→ Which material do you use?
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Performances

Few metrics are used to characterize the performances of a PID detector

→ Efficiency: ability to correctly assign the ID
    e(K) = N(K identified as K)/N(real K)
    Equal, by definition, to the “probability of a kaon to be called kaon”

→ Mis-ID: ability not to assign the incorrect ID
    Mis-ID(K) = N(non-K identified as K)/N(non K)
    Equal, by definition, to the “probability for a non-kaon to be called kaon”

→ Fake rate: fraction of particles with the wrong ID
    F(K) = N(non-K identified as K)/N(identified as K)
    Equal, by definition, to the “fraction of non-kaons in my collection of kaons”
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Performances

In our case:
→ There is Cherenkov light: pion
→ There isn’t Cherenkov light: kaon
→ We expect 10 p.e./pion on average
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Performances

In our case:
→ There is Cherenkov light: pion
→ There isn’t Cherenkov light: kaon
→ We expect 10 p.e./pion on average

The efficiency for pion selection is determined by the Poisson statistics. 

Let’s require to have at least 3 p.e. to declare to have a signal:
→ P(n < 3) ~ 1 % 
→ There is 1% of chances to miss a pion (i.e. a 1% of chance to call kaon a pion)
    Mis-ID probability (K) ~ 1%
→ There is no chance of missing a kaon (no signal)  [Question: is it really true?]
    e(K) ~ 100%
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Fake rates

The fake rate is (to a certain extent) a Bayesian idea

Given that I have something that looks like a kaon, what are the chances for 
this to really be a kaon and not a pion?
 
Let’s assume to have 2% of kaons and 98% pions in the beam

Bayes theorem: 
P(my “kaon” is kaon) = 1 x 0.02 / ( 1 x 0.02 + 0.01 x 0.98) ~ 67%

Fake rate = 33% 

Priors matter!
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From angles to radii
Let’s go back to the differential counter

The spherical mirror focalizes the 
photons according to their angle.

→ A given angle value becomes a     
    length in the focal plane

→ The DISC of Cherenkov photons  
    becomes a RING in the focal       
    plane!

→ If only we could reconstruct        
 the ring...
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The RICH idea
To reconstruct a ring we must do imaging
One big PMT (i.e. one big pixel) is not enough
    PMT → PMT array, Gas photon detector

Resolution

 

Typical angular resolution: ~10-30 mrad
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Back to the radiators
Give that now we really measure the Cherenkov angle, we should perhaps reconsider 
the choice of the radiator

Low momenta
Large n → solids
Many photons
Small detector

High momenta
Low n → gas
Few photons
Huge detector
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RICH examples: LHCb
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RICH examples: LHCb
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RICH examples: LHCb
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RICH examples: LHCb
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RICHs for low momenta

Let’s go back to the beginning. So far we saw detectors for 
→ High momentum particles
→ Single arm, forward experiments (lots of space!)
→ What if we want to have a RICH in a barrel geometry (little space) and for 
    low momenta (~1- 4 GeV)?
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Proximity focusing RICH

Proximity focusing!
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Rings in a proximity focusing RICH
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Few words about resolution

 
In general, the resolution of any Cherenkov device is factorized:

Total angular 
resolution

Everything related to the 
photons (detection, 
production, propagation...)

Correlated part: 
tracking, 
alignment...
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Few words about resolution

 
In general, the resolution of any Cherenkov device is factorized:

Total angular 
resolution

Everything related to the 
photons (detection, 
production, propagation...)

Chromatic 
dispersion

Photon detection
Photon production
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Chromatic dispersion
Chromatic dispersion quickly becomes an issue when you do imaging

Particles with different velocities can emit 
photons of different wavelengths at the very 
same angle
→ Wavelenght filters
→ Corrective optics
→ (more recently) photon time!
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An error budget example: CLEO

The error budget of a 
proximity focusing RICH is 
rather different from the 
one of a focusing RICH
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Drawbacks of proximity focusing

1) The rings are not always circles
    → The incident track angle project and ellipse rather than   
        a circumference
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Drawbacks of proximity focusing

1) The rings are not always circles
    → The incident track angle project and ellipse rather than   
        a circumference

1) Thick radiators blur the image
   → How can you mitigate this?
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Dual radiators: the Belle II ARICH

Dual radiator design
→ Twice the photons, ~ same ring size
→ endcap PID for the Belle II experiment
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Dual radiators: the Belle II ARICH

Dual radiator design
→ Twice the photons, ~ same ring size
→ it actually works!

Stacked radiators Single radiator



Total internal reflection counters
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Solve the problem
This is your 
detector. 

→ You have 7 cm to fit your PID detector for K/pion separation up to 3 GeV
→ We saw that we need ~ 5 cm of solid radiator and ~ 1 m of focusing length
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General structure of a DIRC

Radiator/light 
guide. Must be 
made of a 
high-n material

Air (or gas) to 
provide total 
reflection in 
the bar

Standoff area 
where the light 
path expands

Detector plane
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A real-life DIRC

The only DIRC ever built was installed in the BaBar experiment
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A real-life DIRC

The only DIRC ever built was installed in the BaBar experiment
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A real-life DIRC



63

Limitations

The resolution is limited by the 
focal length (L), the detector pitch 
and the bar thickness. 

As usual, the second term is the 
chromatic dispersion.
This is mitigated using PMTs and 
looking the the near UV/visible 
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Limitations

A way to reduce the chromatic dispersion is to measure the 
timing of the photons in addition to the ring! 
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The FDIRC concept

Add a focusing mirror to the DIRC
→ Eliminate the bar thickness term from the resolution
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The TOP counter principle

The TOP is a “DIRC in the time domain”
→ Cherenkov light trapped and propagated to the readout in a wide bar of fused silica
→ The Cherenkov angle is measured by the time of propagation rather than the ring         
    image on the PMT surface
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Umberto Tamponi - “The TOP counter of Belle II: status and first results” - RICH 2018

The TOP counter at Belle II
TOP implementation in Belle II:
→ 16 modules (or slots) arranged around the interaction point
→ Each module is made of two identical bars of fused silica glued together
→ Backward side: expansion prism, PMTs and readout 
→ Forward side: spherical mirror 
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The chromatic dispersion

The chromatic dispersion is expected to contributed for ~50 ps/m in the DIRC

→ Wavelenght filter to cut the spectrum

→ Make the TOP as short as possible (~ 3 m VS 5 m)

→ Add a focusing mirror at the end of the bar
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Umberto Tamponi - “The TOP counter of Belle II: status and first results” - RICH 2018

What does the TOP measure?

At a collider machine, we can combine the 
ToF and the Cherenkov angle  in one single 
measurement

Key ingredients:
→ Impact point on the detector
→ Single p.e. time resolution (PMT +         
    readout only)< 100 ps
→ RF locking resolution < 10 ps



70

Umberto Tamponi - “The TOP counter of Belle II: status and first results” - RICH 2018

Readout: The PMTs
 

    

The single photoelectron time resolution is the key parameter for the TOP
Our target is s(1 p.e.) < 100 ps 

Hamamatsu MCP-MPTs
→ (1 x 1) in, ~70% active area
→ NaKSbCs photocathode; QE  24% (28% on average) at 380 nm≥
→ 55% collection efficiency
→ Gain = 105 – 106

→ Transient time spread < 40 ps
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Umberto Tamponi - “The TOP counter of Belle II: status and first results” - RICH 2018

Readout: The electronics
 

    

TOP front end electronics is based on the IRSX chip developed by Hawaii University

See Maeda-san’s poster 
for more information!

Scope-on-a-chip
→ 8 channel waveform digitizer
→ 500 MHz Bandwidth
→ 2.7 GSa/s
→ 11.6 ms storage buffer
→ Full waveform output

arXiv:1804.10782

2 x =

Controlled by Xilinx Zinq FPGAs
→ Online pedestal subtraction
→ Online waveform analysis
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The TOP rings

With such a detector, the Cherenkov 
rings are only a distant memory…

In such a detector, the PID is done 
exclusively comparing the expected PDFs 
with the photon time and position

This is how a pion looks like

Single photon time resolution must 
be (much) better than 100 ps
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The TOP reconstruction

NIM A 595 (2008) 252–255, slides by Marko Staric (IJS)
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Umberto Tamponi - “The TOP counter of Belle II: status and first results” - RICH 2018

Visualizing the Cherenkov rings
 

    

2.14 GeV 
prism-facing event

Little room for the 
Cherenkov cone to open up

ID is dominated by the PDF 
shift (i.e. ToF) rather than 
the shape difference
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Visualizing the Cherenkov rings
 

    

1.41 GeV 
mirror-facing event

ID is dominated by the PDF 
shape (i.e. Cherenkov ring) 
rather than the global offset
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TORCH

Designed for the LHCb upgrade
→ Basically a TOP counter + focusing
→ (mostly) a timing device (15 ps resolution! ) plus a bit of Cherenkov imaging 



Putting everything together



Belle II 

Barrel cherenkov: TOP

Endcap Cherenkov: 
ARICH

dEdx: SVD + CDC

Shower shape: ECL 

Pen. depth: KLM 
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Belle II Belle II 

Barrel cherenkov: TOP

Endcap Cherenkov: 
ARICH

dEdx: SVD + CDC

Shower shape: ECL 

Pen. depth: KLM 

All systems 
contribute to PID!

AR
IC

H
79



Combining information
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Each sub-detector provides a likelihood value for 6 possible PID 
hypotheses:
→ electron, muon, pion, kaon, proton, deuteron
→ The likelihood values are calculated comparing the observed signal with the expectation for
     each particle hypothesis (based in MC, data template, or analytic models)
→ If particle is out-of-acceptance, LogL = 0 for all hypotheses

    

Likelihood for hypothesis α from detector d that observed x hits 

Likelihood for hypothesis α from all detectors 

PID probability



dE/dx 

Silicon tracker
→ PDF is templated directly from data using tagged p, K, protons
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dE/dx 

Silicon tracker
→ PDF is templated directly from data using tagged p, K, protons

    

82

Drift chamber
→ Calculate the expected dE/dx after running several data-driven calibrations

    



Time-of-Propagation

 

    

1.41 GeV 
mirror-facing event

83



Dual aerogel proximity RICH

Dual radiator (but another kind of)
→ Two thin (2 cm) layers with different refractive index
→ Tuned to have overlapping rings
→ Reconstruction: count the number of hints in the expected ring
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Calorimeter and KL system

Electromagnetic calorimeter
→ Use the E/p ratio, PDF templated from MC. 
→ More recently: combine all shower shape variables into a BDT
    

85

p < 0.25 GeV/c p > 1.25 GeV/c 



Calorimeter and KL system

KLM (instrumented return yoke)
→ use the penetration depth in the iron plates, accounting for the scintillator 
efficiency
    

86

if hit

if not hit



The impact of TOP and ARICH

 

    

π → K mis-identification probability in collision data 
- True pions tagged in D and Ks decays
- Ask for LL(K) > LL(π)

Belle II 2022
preliminary

Belle II 2022
preliminary

in TOP acceptance in ARICH acceptance
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The impact of TOP and ARICH

 

    

π → K mis-identification probability in collision data
- True pions tagged in D and Ks decays
- Ask for LL(K) > LL(π)

Belle II 2022
preliminary

Belle II 2022
preliminary

in TOP acceptance in ARICH acceptance
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Global performance
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Electron-pion separation Kaon-proton separation



Expectations VS reality

 

    

Performance observed in data still don’t match with (optimistic) MC
- Many lessons learned so far!

    Belle II ARICH 
2022
preliminary Belle II TOP 2022

preliminary
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Lessons learned: ARICH tile alignment

 

    

Aerogel tile edges are responsible for most of the disagreement in 
ARICH

Removing tracks extrapolated in the edges
- Improves PID (expected) reducing acceptance
- Improves data/MC (not expected)

- Work towards better tile alignment

Belle II ARICH 
2022
preliminary
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Lessons learned: background effects on TOP

 

    

For TOP, half of the data/MC disagreement is recovered with more realistic 
simulation
→ Actual dead/hot channel maps form data
→ Backgrounds from random triggers instead of simulation

exp 14

exp 16 exp 17 exp 18

Residual discrepancy is under investigation.
92



Lessons learned: extrapolating is dangerous

 

    

Both TOP and ARICH are outside the tracking volume 
- Rely on track extrapolation
- Decays-in-flight and hard scattering lead to wrong extrapolation
- Significant PID degradation from hard-scattering
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Lessons learned: hard scattering in ARICH

 

    

Sizable material budget in front of ARICH
→ CDC backplane, inner tracker cables…
→ Clearly seen mapping the impact points of electrons with associated photons
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Mitigating material scattering

ARICH 2022
preliminary

Use the Calorimenter behind ARICH and TOP to remove bad extrapolations
- Require a cluster matched with the track
- Powerful tool, but introduced correlation between subdetectors…

95



Looking ahead
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Problems

What do you think are the main challenges ahead?
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Problems

→ Rate

Need timing and 
Granularity
→ MPCPMT
→ SiPM
→ Focussing
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Problems

→ Ageing
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Problems

→ Radiation damage
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Problems

→ Environmental impact
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Take home

→ PID is used at most of the current experiment, and PID information can come     
from (almost) any device

→ PID requires complementarity

→ The richest field of development is on Cherenkov detectors (Belle II, ePIC, LHCb)

→ We all want the same things:
→ fast timing (10-100 ps)
→ high granularity
→ background resilience
→ rate tollerance



Thank you
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Theoretical approaches
Somehow, the theoretical description of the Cherenkov radiation is never (to me) fully 
satisfactory. Different authors take different paths that highlight either one feature or 
another one.

Panofsky-Phillips : Assume from the very beginning that there is radiation 
Frank-Tamm : Get the energy spectrum from the Maxwell equations in the medium
Jackson : Derive Frank-Tamm from the Fermi radiation theory.
Jelley : As Frank-Tamm

 These lectures are the result of a tailoring of different parts (plus some personal additions), 
and you won’t find them on any book (that I know about…)

The texts which are closer (but not identical) to the first part of this lecture are:
→ Hirose Akira, lecture notes (http://physics.usask.ca/~hirose/p812/notes.htm)
→ Jackson, classical Electrodynamics, 2nd Ed.

http://physics.usask.ca/~hirose/p812/notes.htm
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Where to start from?
The starting point of all this derivation are the covariant Maxwell equations
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Lienard – Wiechert Potentials
The starting point of all this derivation are the covariant Maxwell equations
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The retardation effect
What does the “prime” means in the retarded potentials?

Let’s imagine that a source starts moving 
at t=0. We want to know the field in the 
point P located at R from the source

Watch out:  retardation is the very root of the Cherenkov effect !
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The retardation effect

At the time t= t1 the source has moved, 
but the field perturbation has not reached 
P yet.
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The retardation effect

The field changes in P only at the time 
t2. At that point, the field in P is the one 
generated in O, but the source is now in 
a completely different position. 

At the generic time t, the field in P is the 
one generated by the source  at the t’ 
time in the past, when it was at distance 
R(t’) from P 
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The coordinate system

→ P is where the field is evaluated
→ x is the coordinate of P. 
→ R(t) is the distance between the source and P
→ r(t) is the position of the source
→ n(t) is the versor along R
    Contains implicitly x :  n = ( x – r )/r

What is n? What is R? Where the hell is x?
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From the potential to the fields
From the 4-potential, we can easily (ahhahaahhahaha) derive the fields

For the full calculations: Jackson 2nd  Ed, pp. 654-658 
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From the potential to the fields

For the full calculations: Jackson 2nd  Ed, pp. 654-658 

From the 4-potential, we can easily (ahhahaahhahaha) derive the fields

Plug the potential in the 
field definition...
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From the potential to the fields

For the full calculations: Jackson 2nd  Ed, pp. 654-658 

From the 4-potential, we can easily (ahhahaahhahaha) derive the fields

… and get out the fields!
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A closer look

Static term Dynamic term
b = 0.5 

y 
[a

r b
i tr

a r
y]

x [arbitrary]
y 

[a
r b

i tr
ar

y ]
x [arbitrary]

b = 0.5, b’ = -0.001 
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A closer look

Far field approximation: the Coulomb term is negligible at large distances
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A closer look

There is also another, fundamental 
reason to neglect the Coulomb part 
in this context.
Can you figure it out?
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Far field polarization

The far field is confined to the plane 
that comprises the origin, the source 
and the observation point, and is 
always orthogonal to the propagation 
direction

The radiation is linearly polarized!
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How to get to the spectrum?
A this point we have a field generated just because the source is moving
→ Derived in the vacuum, applies also in media re-defining b as b = v*n/c
→ The field has an intriguing singularity at b = 1 … 
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How to get to the spectrum?
A this point we have a field generated just because the source is moving
→ Derived in the vacuum, applies also in media re-defining b as b = v*n/c
→ The field has an intriguing singularity at b = 1 …

To study its spectrum and angular distribution we will study the Intensity 
spectrum.
The intensity is defined in the standard way as the flux of the Poynting vector 
which can be also written in terms of the electric field only:

For the full calculations of this part: Jackson 2nd  Ed, pp. 668 and following  
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Facing the Fourier transform
Almost all the interesting part of the calculation boils down to computing this:

For the full calculations of this part: Jackson 2nd  Ed, pp. 668 and following  
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Facing the Fourier transform
Almost all the interesting part of the calculation boils down to computing this:

For the full calculations of this part: Jackson 2nd  Ed, pp. 668 and following  
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Facing the Fourier transform
How to deal with the retarded time?

For the full calculations of this part: Jackson 2nd  Ed, pp. 668 and following  

In the far field, x and R are parallel
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Facing the Fourier transform
How to deal with the retarded time?

For the full calculations of this part: Jackson 2nd  Ed, pp. 668 and following  

In the far field, x and R are parallel

Keep and eye on this... 

3 → 2 because of the 
change of variable in 
the differential 

This becomes just and overall phase 
that can be neglected
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Here the magic happens
This is probably the most important and yet most controversial part of the calculation.
In the far field approx, the versor n is almost constant. Therefore, it can be proven that:

For the full calculations of this part: Jackson 2nd  Ed, pp. 668 and following  
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Here the magic happens
This is probably the most important and yet most controversial part of the calculation.
In the far field approx, the versor n is almost constant. Therefore, it can be proven that:

For the full calculations of this part: Jackson 2nd  Ed, pp. 668 and following (not true, not even Jackson does this explicitly...)  

And the Fourier integral can be carried out by parts:
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The “Cherenkov frame”

So far we treated the system in a rather general way, but for the case of 
Cherenkov radiation we can make few assumptions that greatly simplify the 
geometry:
→ The source moves on a line
→ We use the source direction as reference axis 

|              | 
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Solving the integral

This part is zero since n and b 
are parallel at infinite.
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We won! 
This is an expression of the radiation intensity as function of frequency and angle
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We won! Did we?
This is an expression of the radiation intensity as function of frequency and angle

Unfortunately this is a representation of a delta function

The square of the delta function is not integrable. 
Everything diverges!
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So, what led us to create free, endless energy 
(and incidentally blow up the whole universe in the process)?

Rethinking our mistakes

First, this object is intriguing, since it is well defined 
also for b > 1. 
Perhaps this is the Cherenkov radiation, but we are 
missing some other contribution that culls the 
divergence...
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Rethinking our mistakes

This integral runs over an infinite range only formally.
The acceleration can be non-zero only over a finite time interval (otherwise we would 
violate the energy conservation principle), and so it acts as a damping function 

Here we removed the damping function and the integral is really over an infinite time!

First hint:
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Second hint:

Suddenly n is not treated as 
constant anymore…

This part is zero since n and b 
are (anti-)parallel at infinite

Rethinking our mistakes
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Rethinking our approximations
In summary:
→ By removing the explicit dependence on the acceleration, we turned an integral that was     
     formally, but not actually, on an infinite range to a real integral over an infinite range.

→ To solve it, we had to violate the far field approximation

How can we get out of this?
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Rethinking our approximations
We have to introduce limits to out problem!

→ Take a slab of dielectric instead of an infinite one

→ Assume that b is almost constant while 
    crossing the slab (but not strictly constant)

→ Assume that in the vacuum before and 
    after there is no acceleration
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More realistic dielectric
Everything goes as before, but the integration range is now finite (the time to cross the slab)

The calculation takes a bit but it’s rather easy if you assume to be able to treat b 
as a constant
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More realistic dielectric

Intensity of the radiation 
emitted by a particle of 
constant velocity when 
crossing a dielectric of 
thickness a.
b is IN the dielectric, so 
encodes the refractive 
index
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Intensity distributions 
OK, that was the last calculation! Now let’s have a look at what we got.
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Intensity distributions 
OK, that was the last calculation! Now let’s have a look at what we got.
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A closer look
Back to the formula, what is happening?

~1

~0, with 
oscillations



142

A closer look
Back to the formula, what is happening?

Goes to 0 at
cosq = 1/b 

Not a singularity,  no infinite energy anymore 

~ 1
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Increasing the speed
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Increasing the speed
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Increasing the speed
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Towards the Frank-Tamm formula

How much radiation is emitted per unit of dielectric?
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Towards the Frank-Tamm formula

How much radiation is emitted per unit of dielectric?

Remember that a limit for  sinc2 is linked to 
the Dirac delta
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