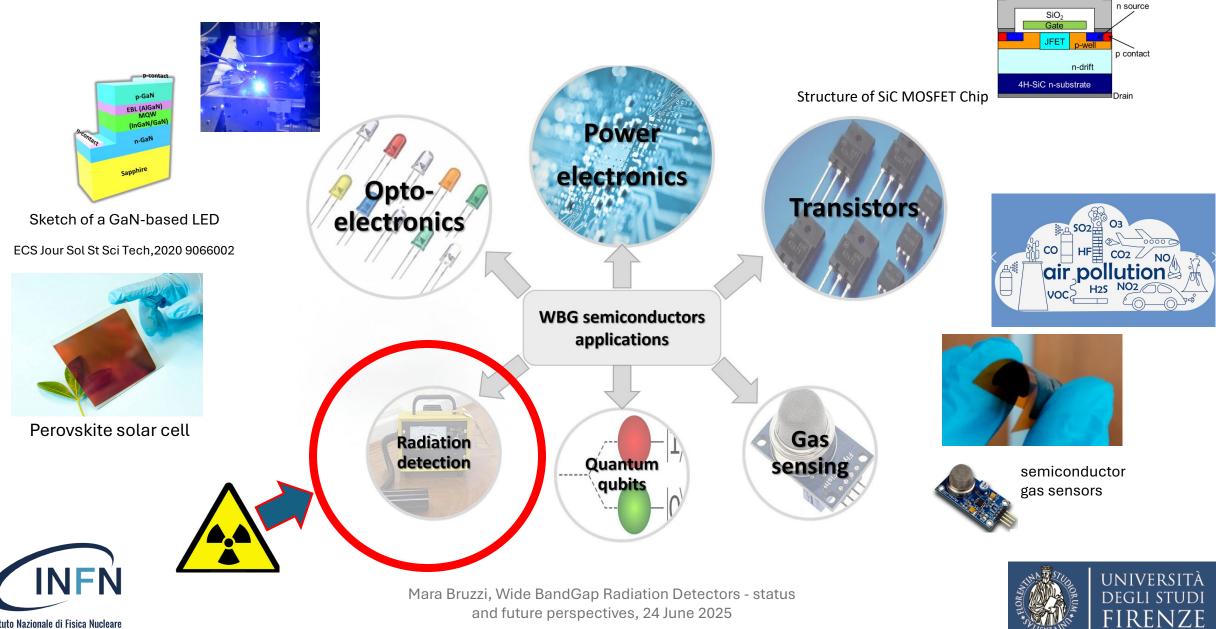
Wide bandgap detectors: present status and future perspectives

Mara Bruzzi

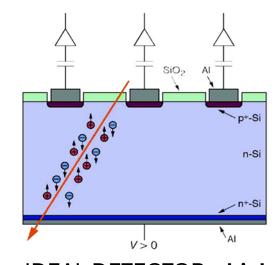
University of Florence

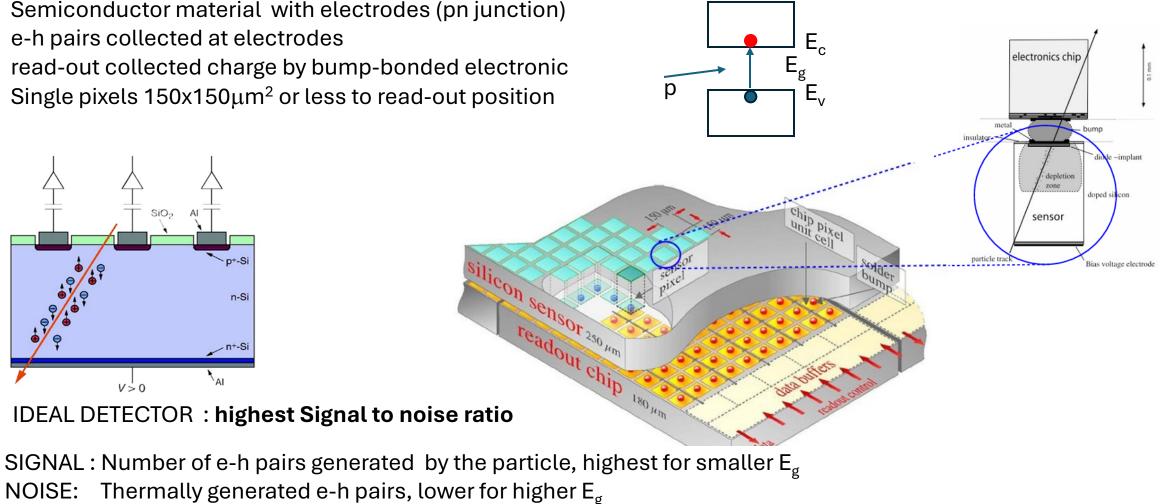
I.N.F.N Sezione di Firenze


Outline

- Introduction : electronic properties of WBG Semiconductors
- Growth processes
- Beyond wafers: the perovskite family
- Lattice disorder, defects and energy levels; how to detect
- Research on WBG Radiation Detectors
 - Explorative studies (blue sky research) in the HEP community
 - Applications in medical field: proton and Flash therapy

Applications of Wide Band Gap Semiconductors

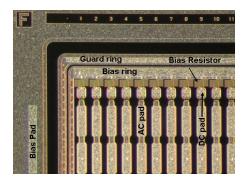



Source

Istituto Nazionale di Fisica Nucleare

Particle Detector: General Design and working principle

- Semiconductor material with electrodes (pn junction)
- e-h pairs collected at electrodes
- read-out collected charge by bump-bonded electronic
- Single pixels 150x150µm² or less to read-out position



NOISE:

Best compromize in between $\rightarrow \rightarrow$ search for optimal wide bandgap material

Beyond Si: Why?

Limitations of traditional semiconductors

- Radiation Damage
- High current, high voltage
- Low Temperature operation
- Bulky, high-purity monocrystalline \rightarrow
- Free-standing
- Rigid, fragile

- \rightarrow Limited lifetime
- \rightarrow power consumption
- \rightarrow cooling required
 - high production costs
- \rightarrow electronic read-out match
- \rightarrow limited conformation

Wide-bandgap semiconductors (WBG)

Larger bandgap than conventional semiconductors

- Ge, Si, GaAs : $E_g = 0.7 - 1.4 \text{ eV}$, - WBG $E_g > 2 \text{ eV}$ Metal
Silicon

Overlapped

Conduction band

SiC e GaN

Insulators

Band

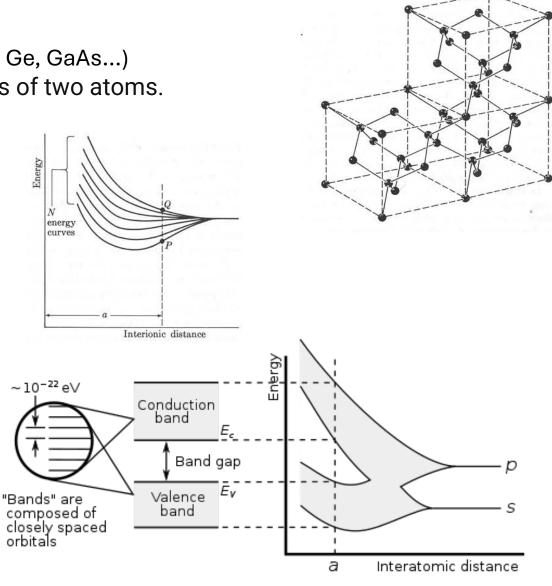
Gap

Valence band

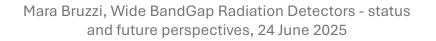
WBG

- WBG permit devices to operate **at much higher voltages and temperatures** than conventional semiconductor materials.
- Low leakage currents even after heavy irradiation fluences
- Higher critical electrical field density, and saturation velocities, which allows them to **work at higher speeds.**

Origin of Bandgap

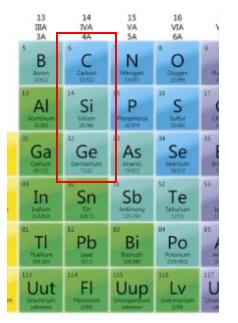

Lattice structure of a crystalline solid (diamond, Si, Ge, GaAs...) \rightarrow FCC (face centered cubic) symmetry with a basis of two atoms.

In a lattice of N atoms, every atomic energy level gives rise to bands of N closely spaced levels, with spacing and position depending on interionic separation *a*.


Bands in the inner complete shells are complete.

T = 0 K

Valence band = uppermost band complete Conduction band = empty band above it Bandgap = forbidden energy between Valence and conduction band



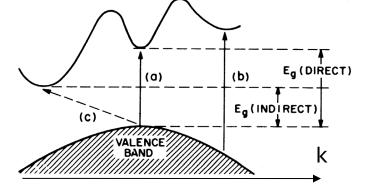
Group IV Semiconductors

Same structure but different lattice constant \rightarrow different bandgap

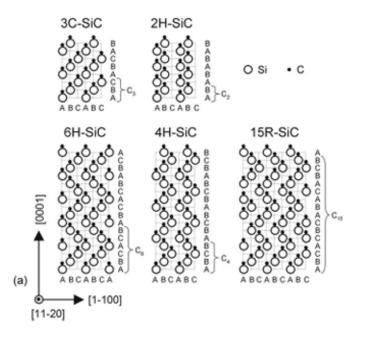
	a [Å]	Eg (300K*)	Structure
C (diamond)	3.567	5.5	Diamond (FCC)
Si	5.431	1.12	Diamond (FCC)
Ge	5.658	0.67	Diamond (FCC)
Sn (gray α)	6.4	metal	Diamond (FCC)

 $E_g(T)=E_g(0)-rac{lpha T^2}{T+eta}$, where $E_g(0)$, lpha and eta are material constants

GAP Energy 0 a' a Interionic distance

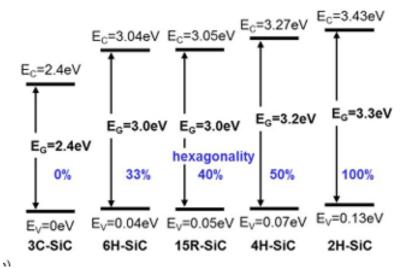

* Gap depend on T

DIRECT GAP GaAs - INDIRECT GAP Si, Ge: phonons involved.



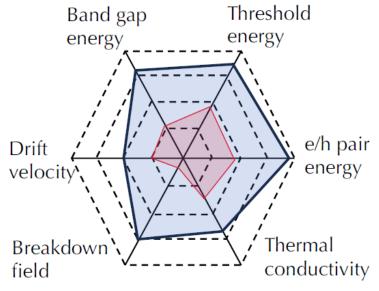
Mara Bruzzi, Wide BandGap Radiation Detectors - status and future perspectives, 24 June 2025

CONDUCTION BAND


SiC – Family

Main application

- Power electronics devices



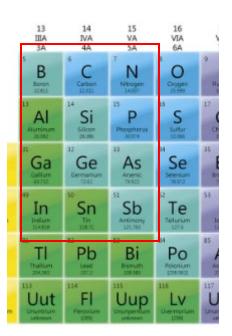
Semicond.Sci.Technol.33(2018)103001

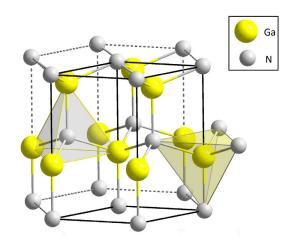
Physical Parameter	Si	4H-SiC
Band gap energy [eV]	1.12	3.26
Thermal conductivity [W/K·cm]	1.5	4.9
Breakdown field [MV/cm]	0.3	3.0
Electron saturation drift velocity (cm/s)	1×10^{7}	2×10^{7}
Hole saturation drift velocity (cm/s)	0.6×10^{7}	1.8×10^{7}
Mean ionization energy for e/h pair (eV)	3.6	7.8
Atomic shift threshold energy(eV)	13	22

Mara Bruzzi, Wide BandGap Radiation Detectors - status and future perspectives, 24 June 2025

UNIVERSITÀ

DEGLI STUDI


FIRENZE


Group III-V binary Semiconductors

1200	GaAs
$\gamma = 120^{\circ}$	GaN
	Each is hey

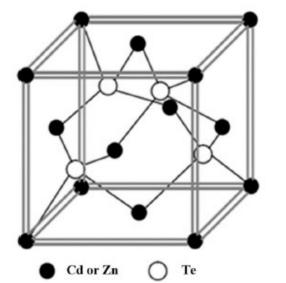
	a,c [Å]	Eg (300K)	Structure
GaAs	3.567	1.42	Zinc-blende (FCC)
GaN	<i>a</i> = 3.189 <i>c</i> = 5.185	3.4	HCP- Wurtzite

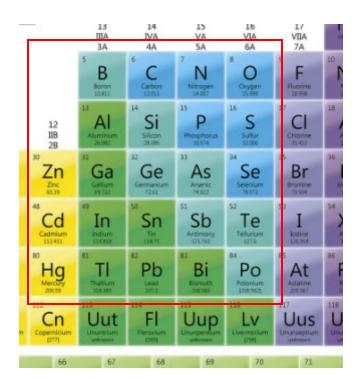
Each of the two individual atom types forms a sublattice which is <u>hexagonal close-packed</u> (HCP-type).

Main application :

- GaN LEDs
- GaAs solar cells, LED, lasers, microwave

https://commons.wikimedia.org/w/index.ph p?curid=48456361


VI group based Widegap Semiconductors


	a [Å]	Eg (300K) [eV]	
CdTe	6.48	1.5	Zinc-blende (FCC)
CdZnTe (CZT)		1.5-2.3	Zinc-blende (FCC)

CZT crystal: CdTe and ZnTe crystals in (1-x):x ratio with a cubic zinc-blende structure. Varying x different compounds are obtained with different chemico-physical properties and gap in the range 1.49-2.26eV.

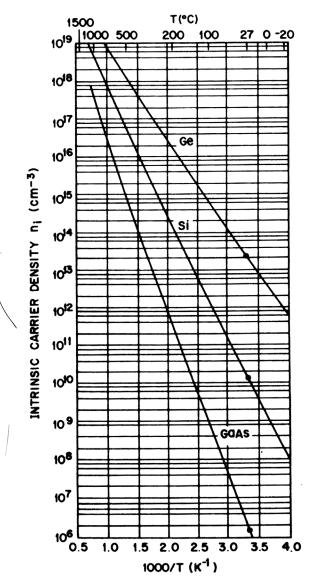
Main application :

- CdTe thin film solar cells
- CZT Scintillating crystals

nearly HCP structure with Al ions filling two-thirds of the octahedral interstices

Main application :

LED substrates

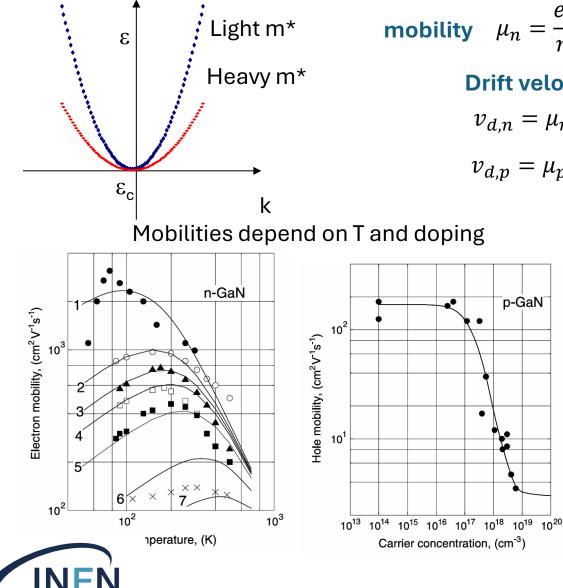

insulator	a [Å]	Eg (300K) [eV]	Structure
Al ₂ O ₃ (sapphire)	<i>a</i> = 4.78 c = 13	9.9	trigonal

INTRINSIC CARRIER CONCENTRATION IN SEMICONDUCTOR

Free carrier concentration \mathbf{n}_i $n_i = \sqrt{N_C N_V e^{-\frac{\varepsilon_g}{2K_B T}}} \rightarrow n_i \alpha T^{\frac{3}{2}} e^{-\frac{\varepsilon_g}{2K_B T}}$

 $N_{\rm c}, N_{\rm v}$ effective density of states of valence and conduction bands

	300K n _i (cm ⁻³)	ε _g (eV)	$\rho_i = \frac{1}{(1-1)^2}$
Ge	2.4 x 10 ¹³	0.66	$\rho_i = \frac{1}{n_i e(\mu_n + \mu_p)}$
Si	1.45 x 10 ¹⁰	1.12	
GaAs	1.79 x 10 ⁶	1.42	
4H-SiC	5×10 ⁻⁹	3.0	
Diamond	≈ 10 ⁻¹⁶	5.5	



WBG are characterized by very low n_i and high resistivity at RT

Effective mass and mobility

Effective mass

$$\mu_n = rac{e au_n}{m_e^*} \qquad \mu_p = rac{e au_p}{m_h^*}$$

Drift velocity

p-GaN

$$v_{d,n} = \mu_n E$$

 $v_{d,p} = \mu_p E$

Low electric field, E

$$\tau = \tau_0 \left(\frac{\varepsilon}{K_B T}\right)^r$$

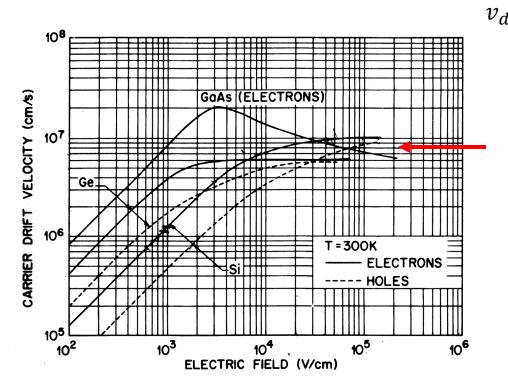
Scattering due to impurities neutral / charged (r = $-\frac{1}{2}$; +3/2) / lattice vibration (r = -3/2)

Holes mobility lower than for electrons

$\frac{\mu_n}{\mu_p} \cong 3 \text{ in Si}$	Material	Gap [eV]	μ _e [cm²/(Vs)]	μ _h [cm²/(Vs)]
	Si	1.12	1450	450
	4H-SiC	3.26	950	115
	Diamond	5.5	4500	3800
	GaN	3.4	2000	100

WBG are characterized by high electron mobility

K.A.Stewart et al. Journal of Non-Crystalline Solids 432 (2016) 199


Mara Bruzzi, Wide BandGap Radiation Detectors - status

and future perspectives, 24 June 2025

al. / Solid-State Electronics 47 (2003) 111-115 Istituto Nazionale di Fisica Nucleare

saturation velocity

Low electric field, E

Diamond SiC GaN: high saturation velocity and critical field

Drift velocity

 $\hbar\omega_0$

High electric field

Material

Si

4H-SiC

Diamond

GaN

 $v_{d,n} = \mu_n E$ $v_{d,p} = \mu_p E$ Intermediate electric field

 v_{sat} saturation velocity $v_s = \left(\frac{8\hbar\omega_0}{3\pi m^*}\right)$

E_{crit}

0.3

2.5

10

3.3

[MV/cm]

V_{sat} 10⁷

[cm/s]

1

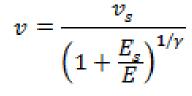
2

2.3

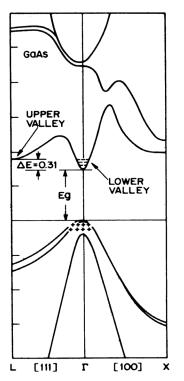
2.4

Carriers emit optical phonon

Shockley/Ryder (1954)


Gap [eV]

1.12


3.26

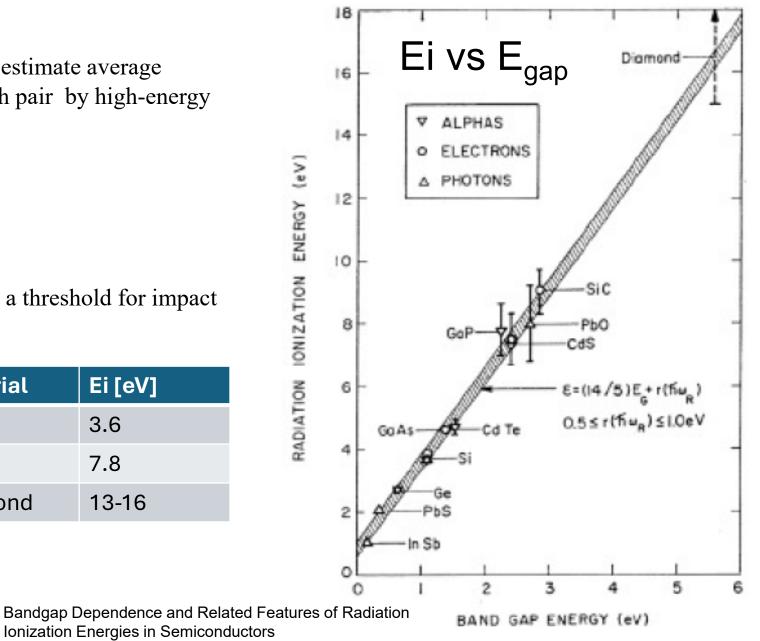
5.5

3.4

GaAs v_{sa<<<<}eak due to multy-valley conduction

Mean Ionization Energy

The Klein law: Phenomenological model to estimate average amount of radiation energy consumed per e-h pair by high-energy radiation.


Three contributions:

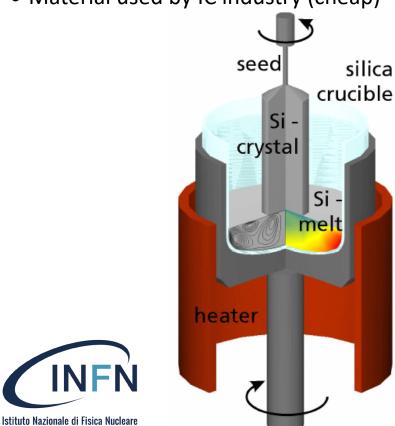
- Intrinsic bandgap (E_G)
- Optical phonon losses $r(h\omega_R)$
- Residual kinetic energy (9/5) E_G , related to a threshold for impact ionization

Material	Ei [eV]
Si	3.6
SiC	7.8
Diamond	13-16

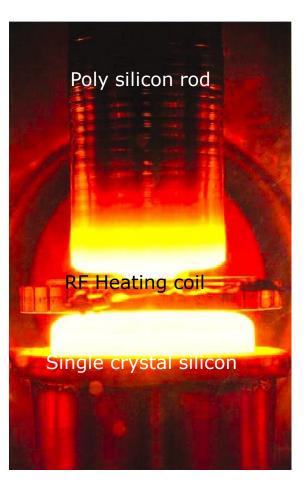
Ionization Energies in Semiconductors

C.A. Klein J. Appl. Phys. 39, 2029 (1968); 10.1063/1.1656484

outline


- Introduction : electronic properties of WBG Semiconductors
- Growth processes
 - Beyond wafers: the perovskite family
- Lattice disorder, defects and energy levels; how to detect
- Research on WBG Radiation Detectors
 - Explorative studies (blue sky research) in the HEP community
 - Applications in medical field: proton and Flash therapy

Growth process Monocrystalline Si


Czochralski process

- Pull Si-crystal from a Si-melt contained in a silica crucible while rotating.
- Silica crucible is dissolving oxygen into the melt
 ⇒ <u>high concentration of O in CZ</u>
- Material used by IC industry (cheap)

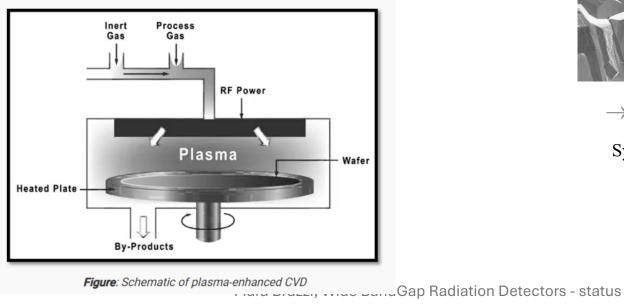
Float Zone process

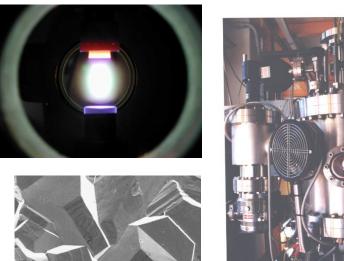
Using a single Si crystal seed, melt the vertically oriented rod onto the seed using RF power and "pull" the monocrystalline ingot - Highly pure crystal : Low concentration of [O] and [C] 10¹⁵cm⁻³

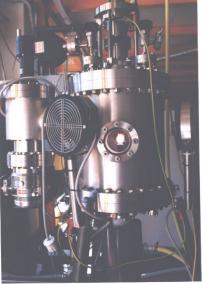
Mara Bruzzi, Wide BandGap Radiation Detectors - status and future perspectives, 24 June 2025

Mono-crystalline Ingot

Wafer production Slicing, lapping, etching, polishing






Chemical Vapor Deposition (CVD)

Synthetic diamond:

- HPHT very high temperature and pressures to convert graphite to diamond; grains are very small.
- → Plasma Enhanced CVD: uses plasma to enhance chemical reactions from gas precursors, enabling uniform coatings at lower temperatures. Ideal for semiconductors, optics, and protective coatings, PECVD improves adhesion and film quality.
- \rightarrow Single crystals with diamond HPHT seed

 \rightarrow DC Plasma Enhanced CVD

System at UNIFI / INFN Florence (1998)

and future perspectives, 24 June 2025

Growth methods : epitaxy

Metalorganic CVD

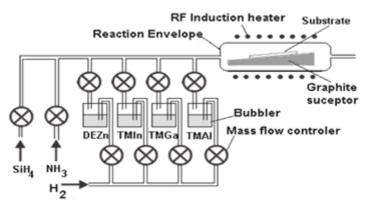
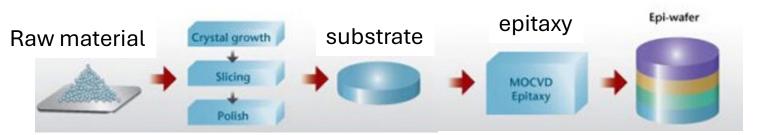
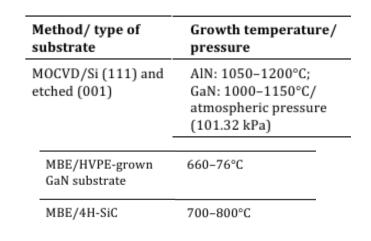



Figure 2. Schematic diagram of MOCVD technique [33].


- Ultrapure precursor gases injected into the reactor,

- metal-organic containing metals and organic ligands

Molecular Beam Epitaxy (MBE):

- sublimation of main elements and dopants
- carried out under UHV pressures 10⁻⁸ to 10⁻¹⁰ Torr.

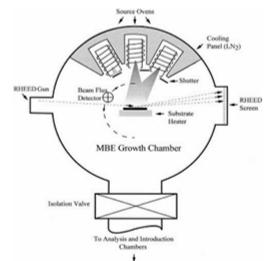
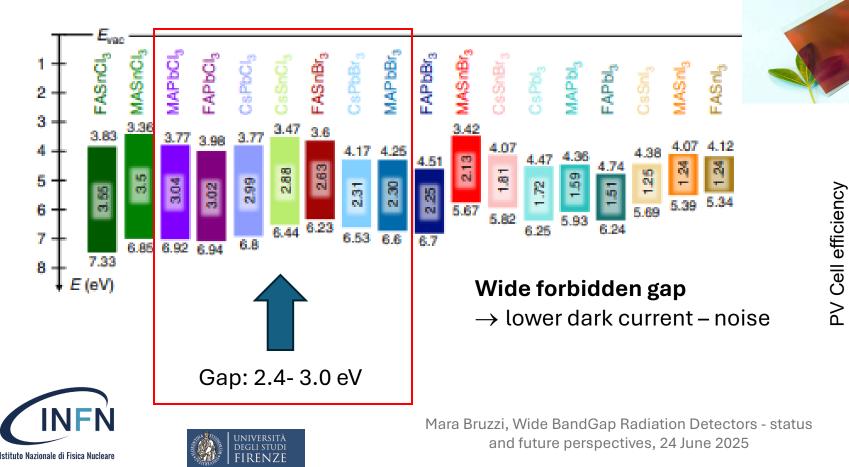
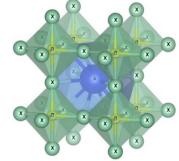
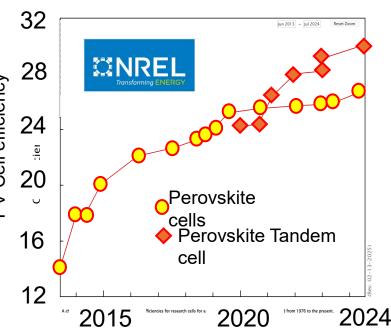


Figure 3. Schematic diagram of the top view of a simple MBE chamber [51].

International Journal of Nanoelectronics and Materials Volume 13, No. 1, 2020 [199-220]

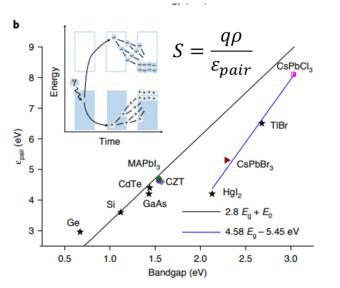





Beyond wafers: Emerging WBG semiconductors The perovskite family

ABX₃ structure (CaTiO₃) A = inorganic/organic cation, B metal cation (Pb₂⁺), X halide (I⁻and/or Br⁻).

Main application : - Solar cells


Advantages of Metal Halide Perovskites for Radiation Detection I Shaded are Green - projectional radiography (20–100 ke

High attenuation coefficients

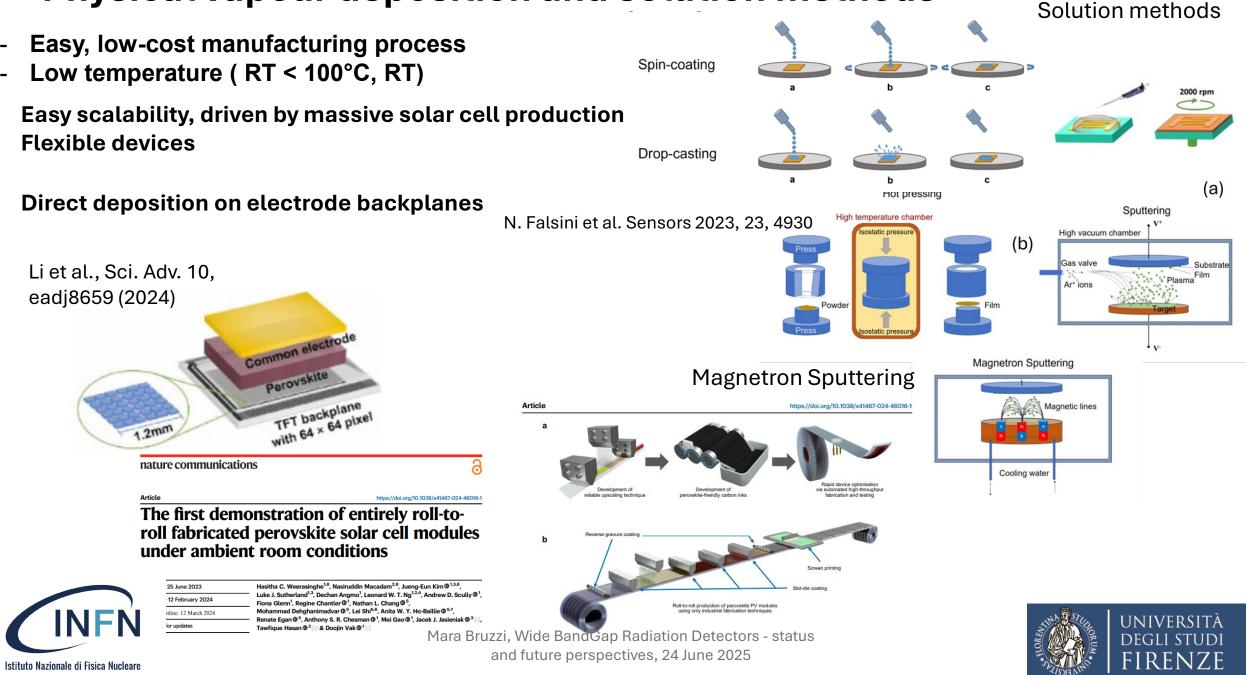
 \rightarrow Thinner

Low mean ionization energies to create an e-h pair

 \rightarrow Higher efficiency, high sensitivity per unit volume

Perovskites for	10 ⁰	40	Si Ge a-Se CZT	
Shaded areas Green - projectional radiography (20–100 keV) Purple - nuclear medical imaging (50–511 keV) Orange - industrial inspection (80–450 keV) Blue - homeland security (0.1–3 MeV) e-h pair	Attenuation (Jum ⁻¹)		CsPt MAPI Cs ₂ A	bl ₃
	10 ¹	10 ²	10 ³	10 ⁴
		Energy (k	(eV)	

	IC(AIR)	Si	SiC	DIAMOND	CsPbBr3
ρ [g/cm³]	1.29x10 ⁻³	2.33	3.21	3.52	4.55
Eg [eV]		1.12	3.26	5.5	2.40
E _i [eV]	34.00	3.60	7.80	16.20	5.30
Sensitivity [nC/Gymm ³]	0.038	647	412	217	860



Good optoelectronic properties

- efficient carrier mobility 1–10 cm² /(Vs)
- long charge diffusion length

Physical vapour deposition and solution methods

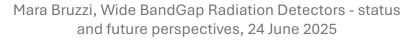
Perovskite flexible thin film radiation detectors

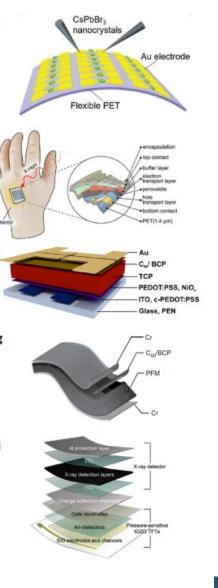
Flexible CsPbBr₃ QDs perovskite-based detector arrays on PET

Adv. Mater. 2019, 31, 1901644

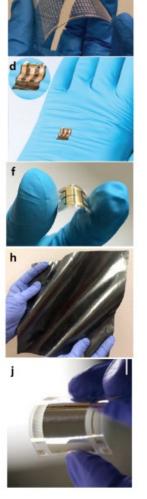
thin film perovskite ultraflexible detector fabricated on 1.4 μm PET

66 Adv. Sci. 2020, 7, 2002586.

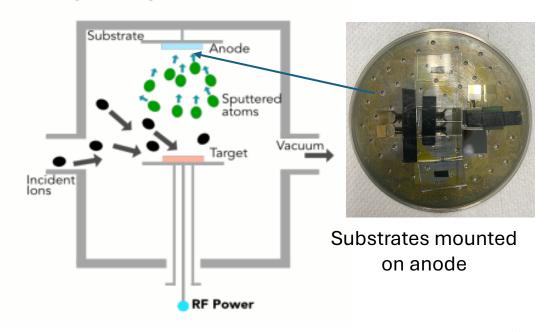

Detectors on flexible polyethylene naphthalate (PEN) substrates inkjet-printed layers of triple cation perovskite (TCP) as X-ray conversion layers ACS Appl. Mater. Interfaces 2020, 12, 15774–15784

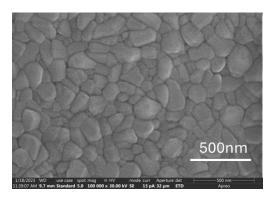

(400 cm²) flexible nylon membrane after loading perovskites

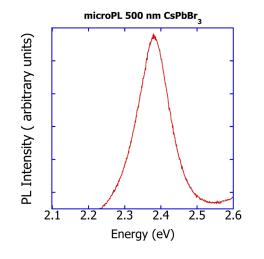
74 Nat. Photonics 2020, 14, 612–617.


multiplexed detector consisting of pressure-sensitive IGZO TFTsand X-ray detectorsAdv. Mater. 2019, 31, 1901644

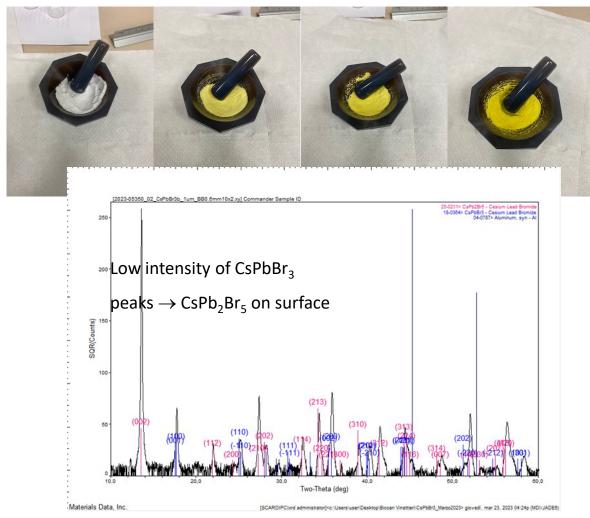
a

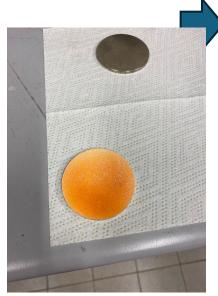


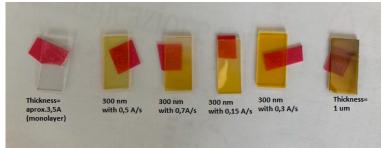

RF magnetron sputtering @ UNIFI – INFN Firenze


- magnetron sputtering equipment, Korvus HEX system
- RF source 13.56MHz,
- □ 18W power Ar gas flow 18sccm.
- **Room temperature**.
- Dynamic working pressure 4×10^{-6} atm, deposition rate 0.5Å/s.
- □ Film thickness monitored using quartz crystal nanobalance

SEM image @ 100 K magnification of a 500nm CsPbBr₃ sample


Compact film composed of crystallites of about 100nm size


Target production stages of grinding process of two salts CsBr and PbBr₂



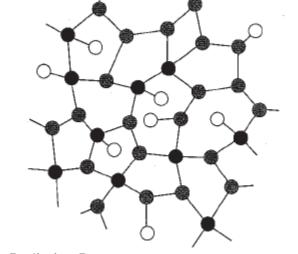
XRD phase identification for 1 μm at 0.3Å/s

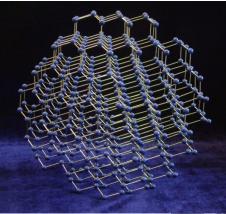
press and obtained target

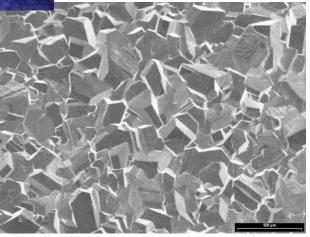
left to right: from crystal monolayer 3.5 Å to 1 μm thickness

Outline

- Introduction : electronic properties of WBG Semiconductors
- Growth processes
 - Beyond wafers: the perovskite family
- Lattice disorder, defects and energy levels; how to detect
- Research on WBG Radiation Detectors
 - Explorative studies (blue sky research) in the HEP community
 - Applications in medical field: proton and Flash therapy


Crystalline vs Amorphous

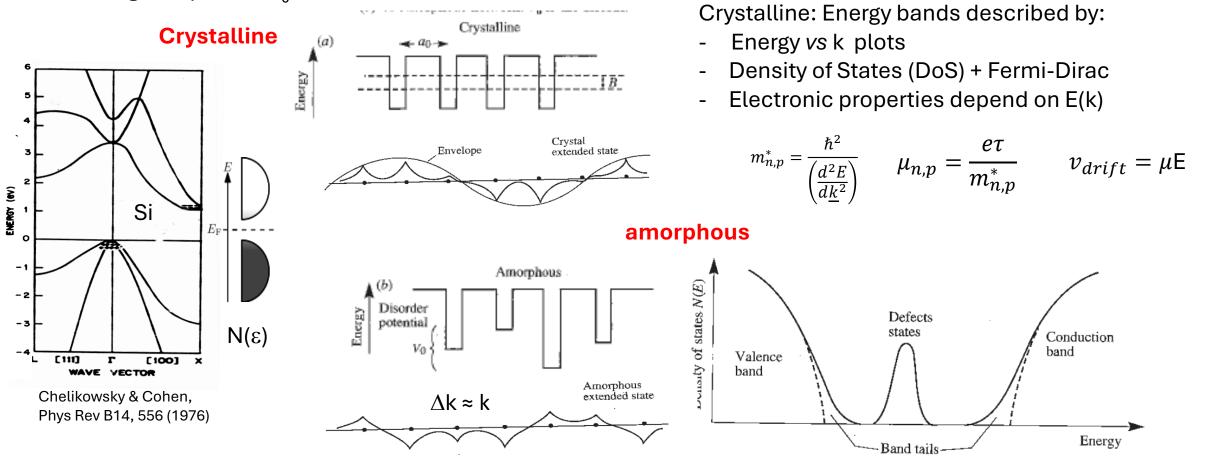

Crystalline : Long-range order and periodic structure


Low lattice disorder \rightarrow high mobility and lifetime of e-h pairs generated by the incoming particle \rightarrow complete charge collection.

Polycrystalline: crystal organization on the order of micron to mm: grains with different orientation and dimension are surrounded by grain boundaries. E-h suffer of trapping and recombination means at defects, \rightarrow reduced mobility and lifetime \rightarrow incomplete charge collection.

Amorphous: short-range ordered structure. \rightarrow low mobility, lifetime \rightarrow incomplete charge collection \rightarrow Less effect on radiation-damage

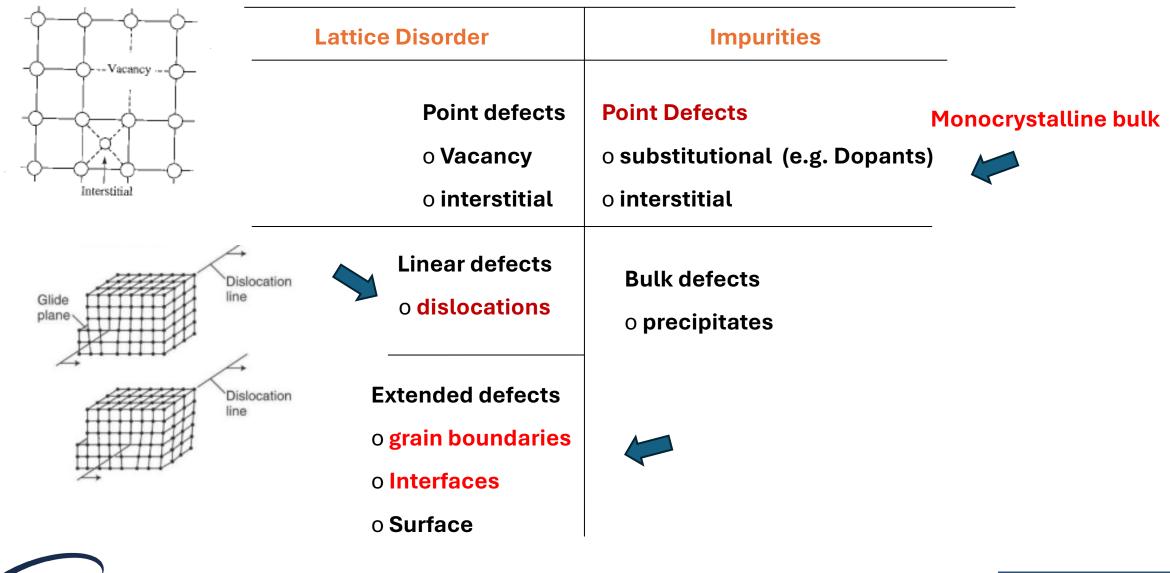
Coordination



Crystalline vs amorphous

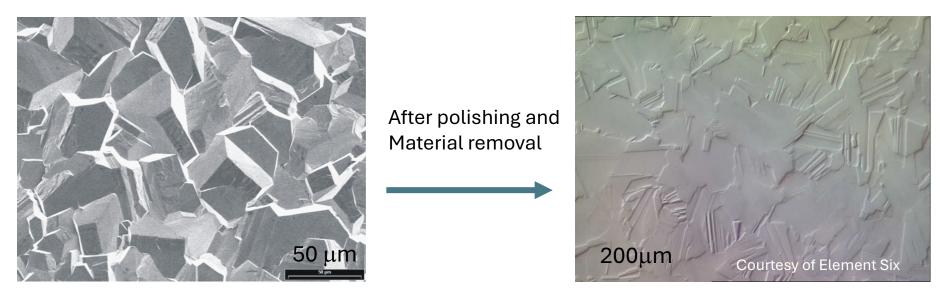
E_g comes as a result of the short-order coordination (molecular bonding)

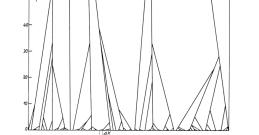
Anderson model (1958) Perfect crystal: array of equal potential wells. Amorphous: array plus random potential with average amplitude V_0 .

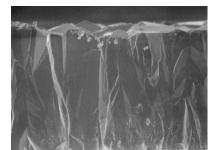


- Energy bands **not described as a function of k** , only by DoS + F-D
 - Band tails due to defects settle free carriers mobility edges, low mobility

UNIVERSITÀ DEGLI STUDI FIRENZE


The effect of crystalline quality : Native / Radiation Induced Defects

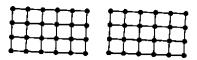



Polycrystalline structures example: synthetic (Chemical Vapour Deposited) Diamond

Presence of grain – boundaries around the crystallites

- Columnar growth – increased quality at growth side

CVD diamond made in 1998 by UNIFI / INFN Florence



Istituto Nazionale di Fisica Nucleare

università degli studi FIRENZE

Epilayer grown on substrates: need of single crystals with matching lattice constant and thermal expansion coefficient.

Lattice Lattice matched mismatched

Dislocations due to lattice mismatch

Threading dislocation \rightarrow extends from strained layer system, going through layer or bending at interface into misfit dislocation


Misfit dislocation: **crystal defect localized at the substrate/layer interface**, generated during the growth process and associated with the ending or starting of an atomic plane in the crystal in case of compressive or tensile system

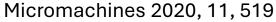
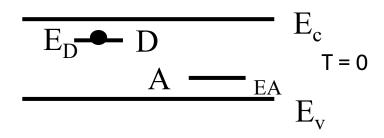
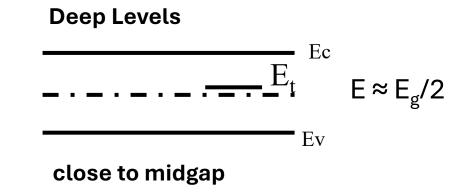

GaN-on sapphire vs GaN-on-GaN epilayers

Table 2. Lowest reported threading dislocation density (TDD) in GaN drift layers on different substrates.

Parameter	Si	Sapphire	SiC	GaN
Lattice mismatch	-17%	-33%	3.5%	0
Thermal Mismatch	116%	-23%	24%	0
TDD (/cm ²)	$\sim 10^{9}$	$\sim 10^{9}$	$\sim 10^{7}$	$\sim 10^{4}$

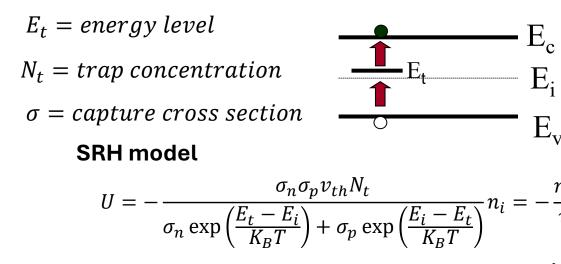

TEM pictures


Energy levels related to Defects

Shallow Levels

 \rightarrow fully ionized at moderate temperatures

→ Doping and avalanche layers


- Charge trap
- Generation/ recombination centres
- Dopant removal / compensation

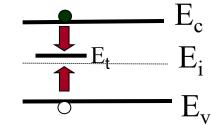
Main doping shallow levels in Si and WBGSs

	4H-SiC	GaN	Diamond	Si
E _D [meV]	60 (N)	22 (Si)	570 (P)*	45 (P)
E _A [meV]	250 (Al)	160 (Mg)	500 (B)	44 (B)

*n-type doped diamond is still a challenge, many promising elements (Li,Na, N, P, O, S). P is regarded as the most promising dopant, however, the doping efficiency of phosphorus in diamond at room temperature is low (50–90% compensation rate). Electronics **2024**, 13, 1703. https://doi.org/10.3390/electronics13091703

Generation / recombination due to deep levels in gap

Depletion region: generation of free carriers


Affecting noiseNeed for cooling

$$\begin{split} I_{gen} &= q |U|W = q \frac{n_i}{\tau} W \qquad \text{W = depletion depth} \\ &\text{if} \qquad E_i \approx E_t \text{ ; } \sigma_n \approx \sigma_p \quad \rightarrow \ \tau \cong \frac{1}{\sigma v_{th} N_t} \end{split}$$

Neutral region: Recombination of carriers due to deep levels

 \rightarrow Bulk resistivity go to intrinsic

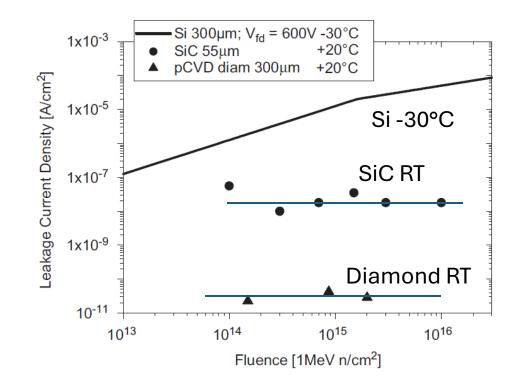
 \rightarrow Free cariers removal

Mara Bruzzi, Wide BandGap Radiation Detectors - status and future perspectives, 24 June 2025

Si: linear increase of midgap level N_t with fluence $\rightarrow \rightarrow$ linear increase of leakage current per unit volume

> $J(\varphi) = \alpha \varphi W$ α = damage constant W = depletion depth

Generation of leakage current due to midgap defects is not present in WBG semiconductors

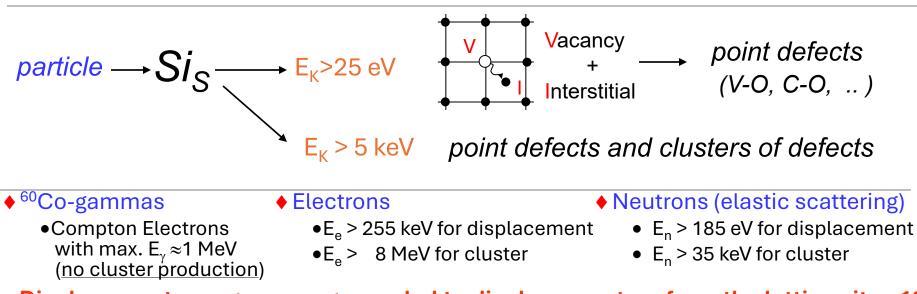

The radiation induced lattice disorder is not affecting the leakage current

WBGs

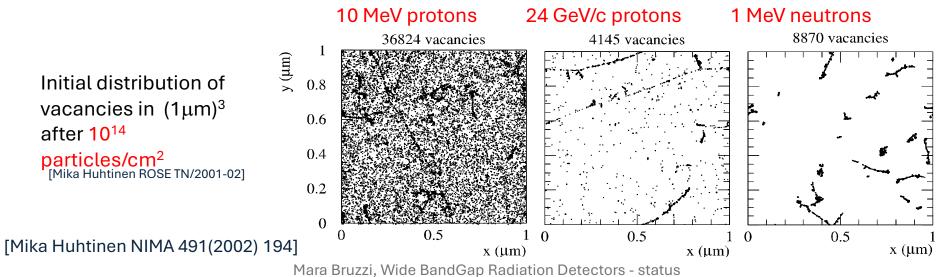
 \rightarrow low leakage current @ RT

 \rightarrow even after very high fluence

SiC and Diamond leakage current compared to Si

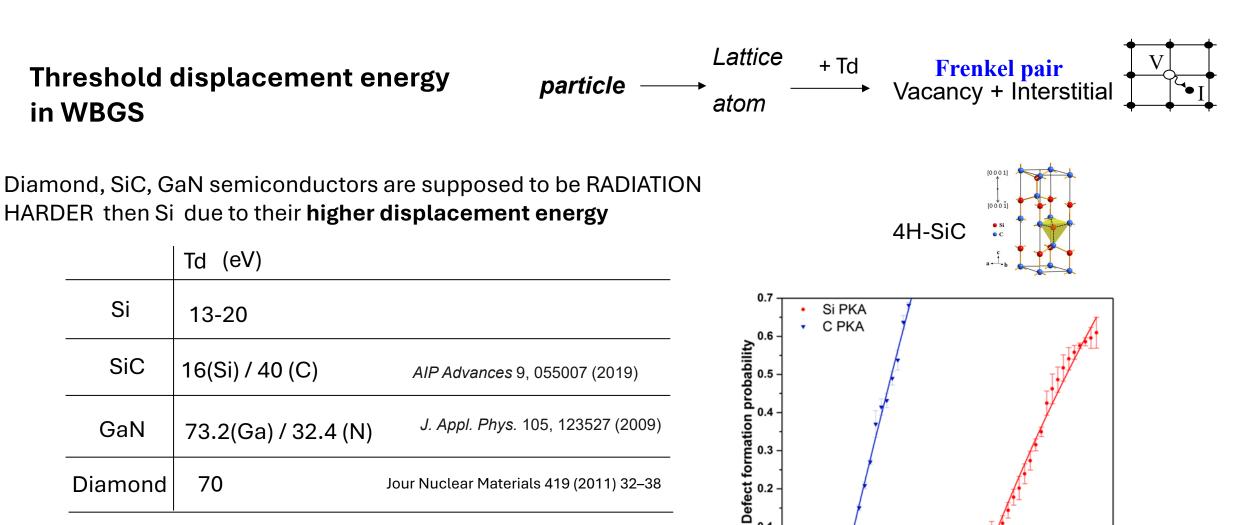

Comparing radiation tolerant materials and devices for ultra rad-hard tracking detectors

Mara Bruzzi^{a,*}, Hartmut F.-W. Sadrozinski^b, Abraham Seiden^b


^aINFN Florence—Dipartimento di Energetica S. Stecco, Via. S. Marta 3, Firenze, Italy ^bSCIPP, University of California Santa Cruz, Santa Cruz, CA 95064, USA

Available online 11 June 2007

Radiation induced Defects



Displacement energy - energy needed to displace an atom from the lattice site: 13-20 eV Si , 43eV Diamond .

and future perspectives, 24 June 2025

Threshold displacement energy in WBGS

	Td (eV)	
Si	13-20	
SiC	16(Si) / 40 (C)	AIP Advances 9, 055007 (2019)
GaN	73.2(Ga) / 32.4 (N)	J. Appl. Phys. 105, 123527 (2009)
Diamond	70	Jour Nuclear Materials 419 (2011) 32–38

FIG. 4. Defect formation probabilities for both Si and C PKA.

15 20

25

30

35

PKA energy (eV)

40

45

50

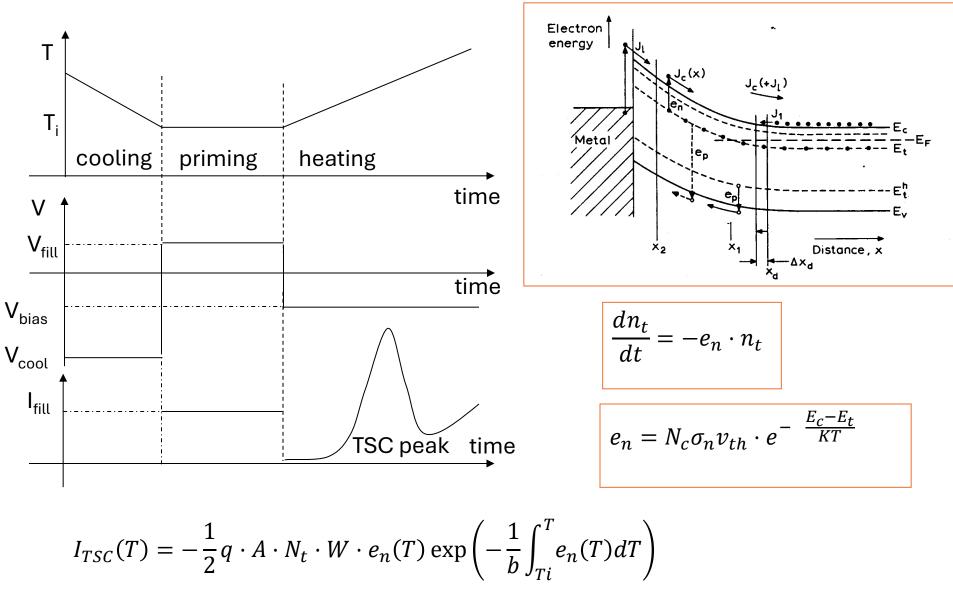
55 60 65

....

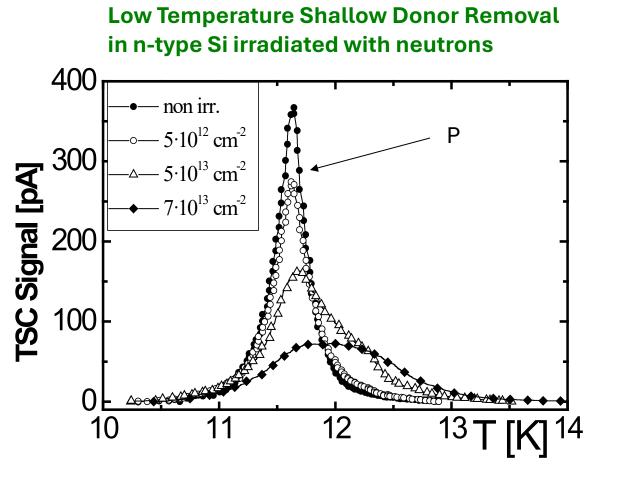
10

0.1

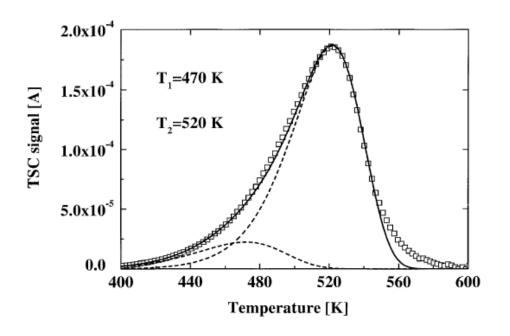
0.0


5

How to detect electrically active defects?


Defect Spectroscopy in semiconductors

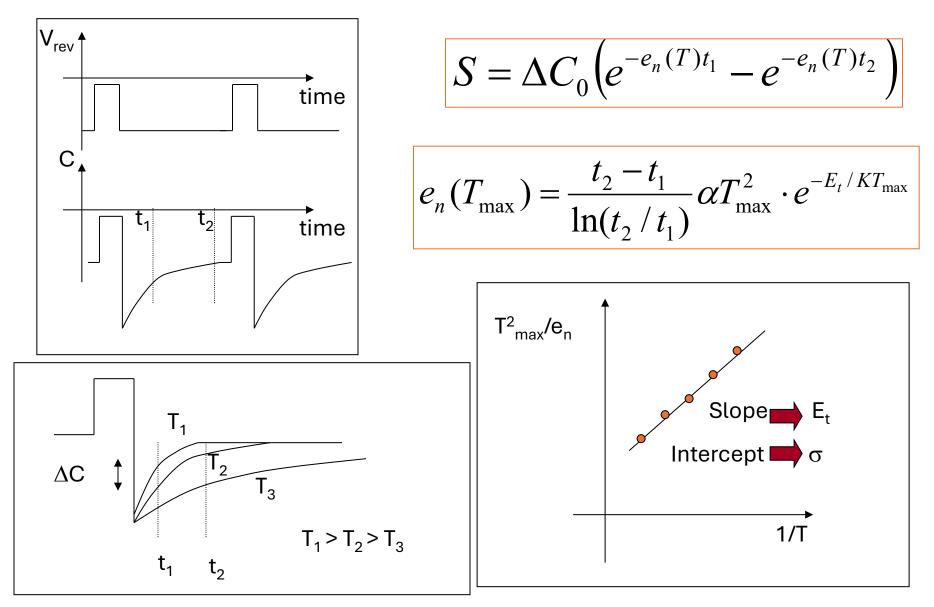
- **1. Thermally Stimulated Currents TSC**
- 2. Deep Level Transient Spectroscopy DLTS
- 3. Photo Induced Current Transient Spectroscopy PICTS


Thermally Stimulated Current: TSC

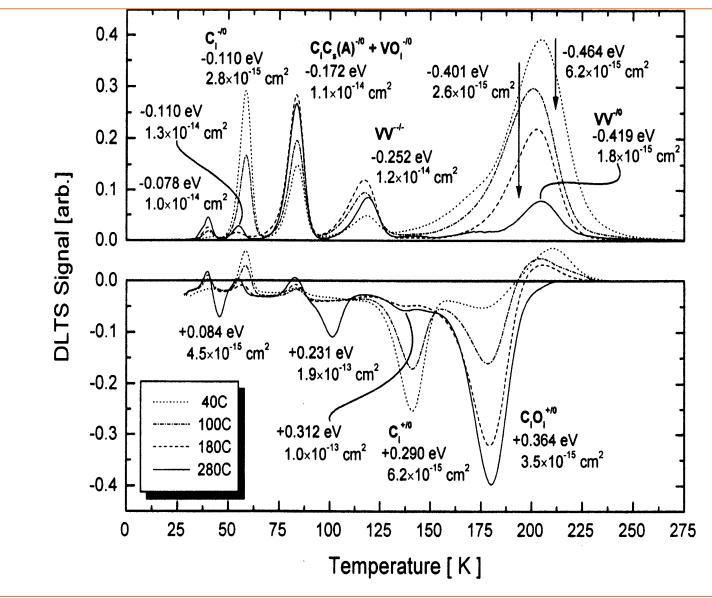
Mara Bruzzi, Wide BandGap Radiation Detectors - status and future perspectives, 24 June 2025

High Temperature: Deep levels due to Native defects in CVD Diamond

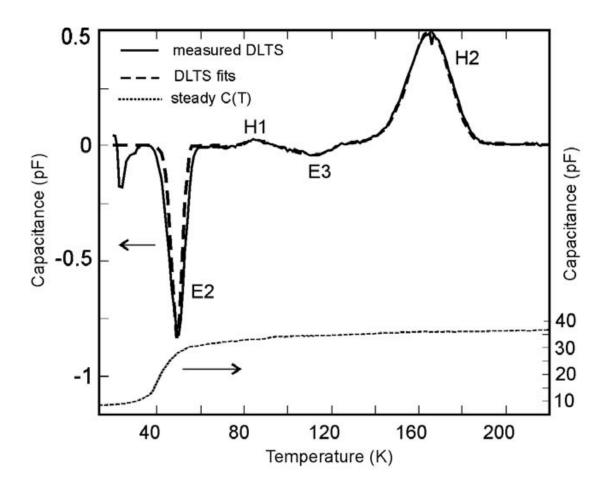
J. Phys. D: Appl. Phys. 33 (2000) 299-304. Printed in the UK


PII: S0022-3727(00)06399-3

Thermally stimulated currents analysis of the shallow levels in irradiated silicon detectors Nuclear Instruments and Methods in Physics Research A 426 (1999) 181*D*184


E Borchi†‡, M Bruzzi†‡, Z Li§ and S Pirollo†‡

Mara Bruzzi, Wide BandGap Radiation Detectors - status and future perspectives, 24 June 2025


Deep Level Transient Spectroscopy DLTS

Mara Bruzzi, Wide BandGap Radiation Detectors - status and future perspectives, 24 June 2025 Example: DLTS in Silicon $f = 10^{11} \text{ cm}^{-2} 5.3 \text{MeV}$ neutrons ROSE Coll. NIM A 466 (2001) 308-326

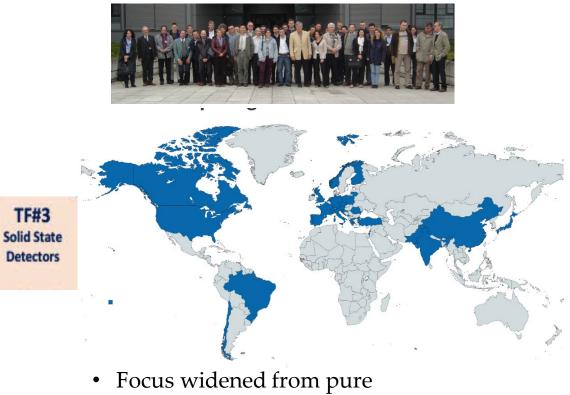
Example: DLTS in 4H-SiC

Level	Defect	<i>E</i> (eV)	$\sigma \ (\cdot 10^{-15} \ { m cm}^{-2})$	$N_{\rm t}$ (·10 ¹⁵ cm ⁻³)	Notes
E1	Shallower N	$\sim 0.05^{a}$	-	1.1	Observed only by current techniques.
E ₂	Deeper N	0.1±0.01	10-200		(E,σ) deduced from Arrhenius plot. Overall N_t from $C(V)$ at 300 K.
E ₃	_	0.15 ± 0.01	~ 0.01	< 0.1	
E ₄	Z _{1/2}	$0.63 - 0.67^{a}$	$3 - 20^{a}$	< 0.01	
H ₁	-	0.11±0.01	0.01– 0.1	0.2	Data from I-DLTS, TSC and TSCAP correlation. Not observed by C-DLTS.
H ₂	Shallower B	0.28 ± 0.01	0.2-1	0.04 - 0.1	(E,σ) from Arrhenius plot.
H ₃	Deeper B	0.58-0.63 ^a	10– 100 ^a	< 0.01	*

The superscript a indicates data taken from literature—these cases were checked for agreement with our measurements.

4H-SiC n-type epitaxial wafer p^+n junction p+ Al implantation in the epilayer 40 μ m thick, n (nitrogen N) doped with density N_D=1.1×10¹⁵ cm⁻³

D. Menichelli et al. / Diamond & Related Materials (2006)


Outline

- Introduction : electronic properties of WBG Semiconductors
- Growth processes
 - Beyond wafers: the perovskite family
- Lattice disorder, defects and energy levels; how to detect
- Research on WBG Radiation Detectors
 - Explorative studies (blue sky research) in the HEP community
 - Applications in medical field: proton and Flash therapy

DRD3: Semiconductor Detectors

- DRD3 benefits from previous <u>RD50</u> and
- <u>RD42 communities</u>
- realization of the strategic developments outlined by Task Force 3 (TF3) in the ECFA road map
- promoting blue-sky R&D in the field of solidstate detectors.
 - CB Board chair : Giulio Pellegrini (CNM Spain)
 - Spokesperson: Gregor Kramberger (JSI Slovenia) deputies
 - Webpage: https://drd3.web.cern.ch/
 - Large Collaboration: 143 institutes
 - 600+ interested people
 - ~ 70% are from Europe, 15% from North America
 - <u>1st DRD3 collaboration meeting</u> (17-21 June 2024);
 - <u>2nd collaboration meeting</u> (3-6 Dec 2024)

- Focus widened from pure radiation hardness (HL-LHC Ph-2 upgrades) to lepton collider needs
- Large interest in CMOS (DMAPS) sensors
- * Blue sky \rightarrow Non-silicon-based detectors

DRD3: Research Structure Strate

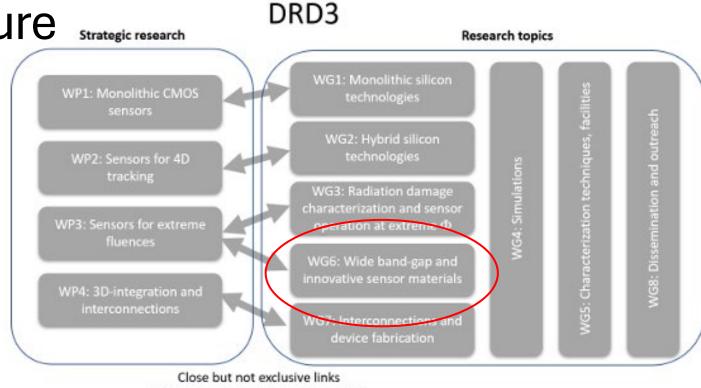
WP - DRDTs

WP1 - DRDT 3.1 Monolithic CMOS sensors
WP2 - DRDT 3.2 Sensors for 4D-tracking
WP3 - DRDT 3.3 Sensors for extreme fluences
WP4 - DRDT 3.4 3D-integration & interconnections

Working Groups - WGs

WG1 Monolithic silicon technologies

- WG2 Hybrid silicon technologies
- WG3 Radiation damage characterization and sensor


operation at extreme fluences

WG4 Simulations

WG5 Characterization techniques, facilities

WG6 Wide band-gap and innovative sensor materials

WG7 Interconnections and device fabrication WG8 Dissemination and outreach

between corresponding WP and WG

WG 6 - Wide Bandgap and Innovative Sensor Materials

Convenors:

Alexander Oh (alexander.oh@cern.ch) Xin Shi (xin.shi@cern.ch)

Meetings:

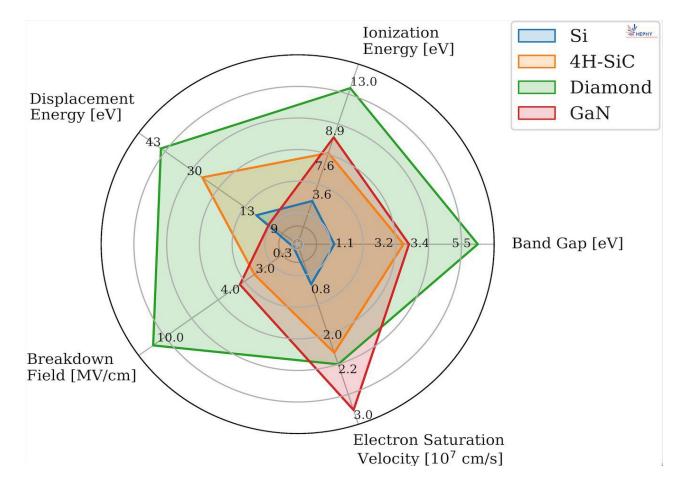
WG6 General Meetings: <u>https://indico.cern.ch/category/18202/</u>

DRD3___Silicon_Detectors___Scientific_Proposal_27052024_V3.1.pdf

 \rightarrow GaN / SiC / Diamond

Proposals:

- GaN for MIP detection <u>CERN-DRD3-PROJECT-2024-001</u>
- SiC LGAD Detector <u>CERN-DRD3-PROJECT-2024-002</u>
- 3D diamond detectors <u>CERN-DRD3-PROJECT-2024-003</u>

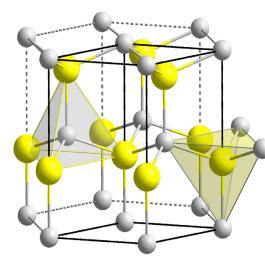

Contacts:

Email: <u>drd3-wg6-conveners</u> Meetings: <u>Indico Page</u> E-group subscription: <u>drd3-wg6-non-silicon</u> Mattermost: <u>WG6 channel</u>

Mara Bruzzi, Wide BandGap Radiation Detectors - status and future perspectives. 24 June 2025

Materials under investigation in WG6:

- Silicon Carbide
- Diamond
- Gallium Nitride



DRD3

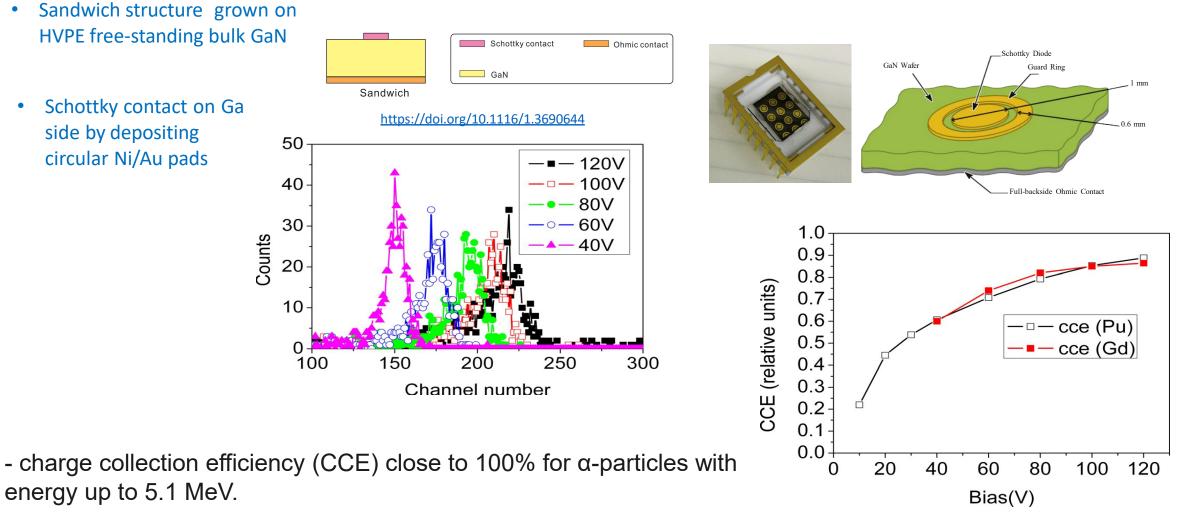
Gallium Nitride

- Wide direct bandgap semiconductor, E_g = 3.4 eV wurtzite crystalline structure
- High electron mobility (up to 2000 cm²/Vs)
- High breakdown voltage (600-1200 V/μm)
- High atomic bond energy (~9 eV/atom)
- Higher power density and faster switching speed compared to silicon, use in power electronics

DRAWBACKS: less mature technology, typically with high dislocation density >10⁶ cm²

Loss of carriers due to deep traps at dislocations

Impact on mobility of charge carriers

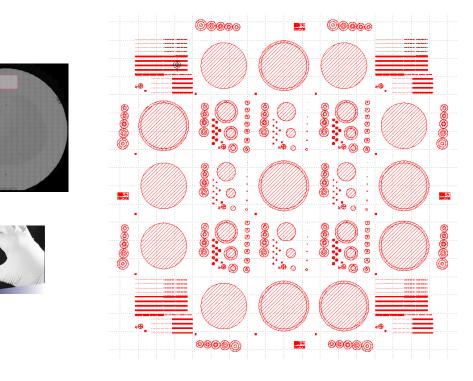

Better GaN growth methods holds the key to the future (GaN-on-GaN)

Neutron irradiation to 10¹⁸ neq/cm² in August 2024 at JSI

• Note: GaN FETs still functional after >10¹⁷ neq/cm² protons irradiation

Gallium Nitride: α detection

DRD3



GaN Schottky device

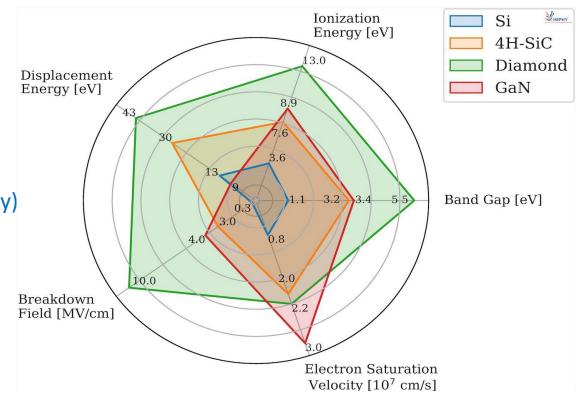
Fabricating GaN Schottky devices using 8 µm GaN epi-layer on GaN native substrate

- At the Canadian National Research Council (NRC) and CNM-Barcelona
- 2" wafer
- rear-side Ohmic metal with high T anneal
- front-side Ni/Au Schottky metal with ~0.8
 eV barrier after rapid thermal anneal
- Variable area devices with & without guard rings to suppress surface leakage
 - significantly improved GaN material quality when epitaxial layer is grown on native substrate

See 43rd RD50 Workshop

GaN future work

- Continue with Schottky device fabrication at NRC and CNM
 - More irradiations, material defects measurements, CCE
 - Many GaN radiation damage issues still not understood
 - Poor understanding of interaction of radiation defects with dislocations
 - Effect of defect transformation upon annealing not understood
- Assess GaN devices as potentially high-rate, high timing precision devices
- Identify industrial partners
 - Investigate possibility of large-scale production, e.g. ≥6" wafers
 - Main issue: particle physics a low-priority customer due to small size


Silicon Carbide

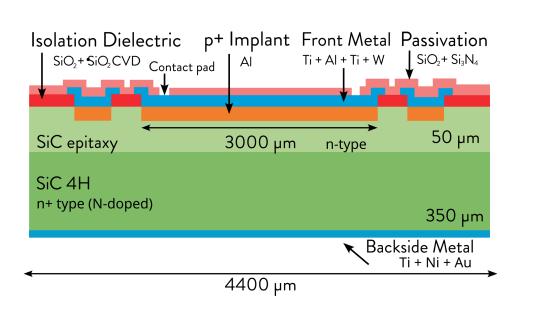
DRD3

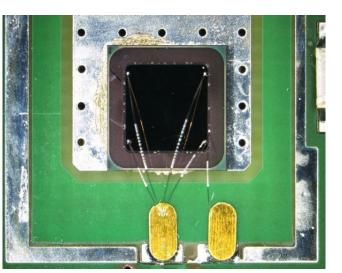
- Wide bandgap semiconductor (3.26 eV) Low leakage currents, insensitivity to visible light
- Renewed interest:

High quality wafers for power electronics industry

- + High breakdown field and saturation velocity : Timing applications
- + **Potentially higher radiation hardness** (displacement energy) no cooling needed after irradiation
- Higher ionization energy (~30% less signal per μm) [9]
- Limitations in wafer thickness and resistivity

SiC-LGAD RD50 Common Fund Project DRD3


- RD50, now DRD3 project started about a year ago
- Aiming to produce planar diodes and LGADs on 6-inch wafers at CNM
- First results from planar run
- Update on LGAD progress


A ativity	Institute		Year 1										Year 2										Year 3								
Activity			Q1		Q2			Q3		Q4			Q1		Q2			Q3		Q4			Q1	L	Q2			Q3		Q4	ŧ
TCAD simulations	HEPHY, CNM	Pl	ana	ar						LG	δAC) rı	ın1				L	.GA	D rı	ın2											
Wafer layout	HEPHY, CNM																														
Production	CNM																														
IV, CV characterization	HEPHY, CNM, Perugia, NIKHEF																														
UV-TCT Measurements	HEPHY, CNM																										Τ				\square
TPA-TCT Measurements	Santander											♠																			
Alibava	CERN																														
Neutron Irradiations	НЕРНҮ																														\square
X-Ray irradiations	Perugia																														\Box

Silicon Carbide

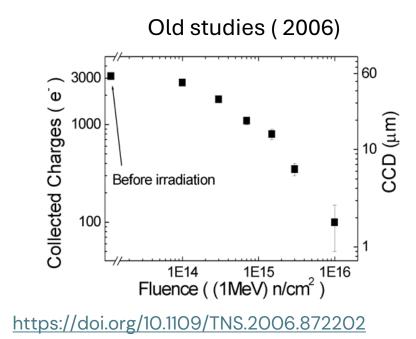
- 4H-SiC p-n planar diodes from Run 13575 of CNM [5]
- \cdot 3 x 3 mm² active area, 50 μ m epi

Full depletion voltage : 400 V, C_{det} = 18 pF

4H-SiC pad diode on readout board

DRD3

material from HEPHY


Rafí et al. Electron, Neutron, and Proton Irradiation Effects on SiC Radiation Detectors. IEEE TRANSACTIONS ON NUCLEAR SCIENCE 67, 9 (2020).

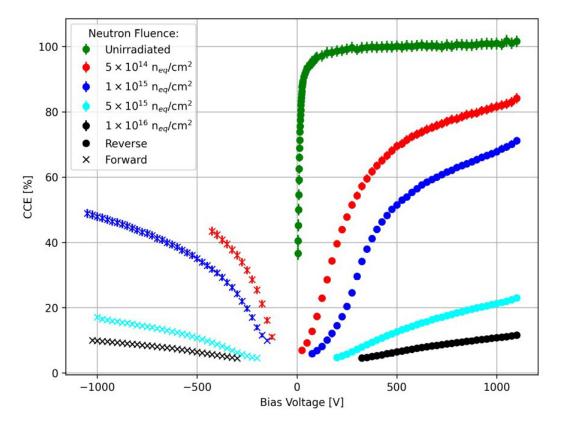
Silicon Carbide: Neutron Irradiation studies

DRD3

• Neutron irradiated $(5 \cdot 10^{14} - 1 \cdot 10^{16} n_{eq}/cm^2)$ at ATI Vienna [6] (previous studies [7,8])

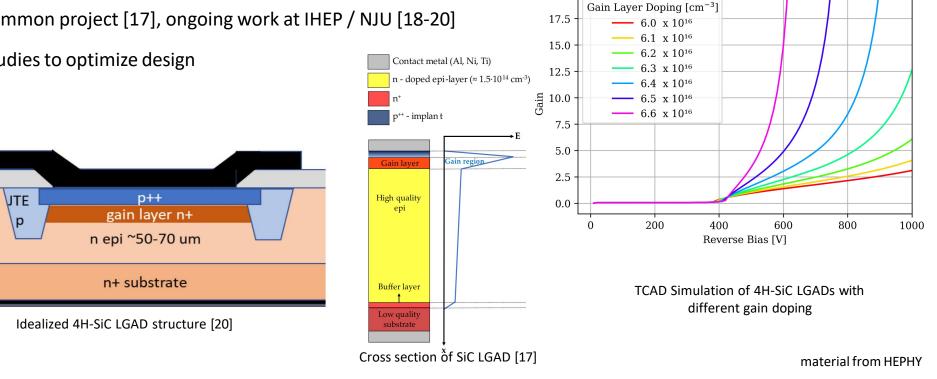
Fluence n _{eq} /cm ²	CCE %
5 × 10 ¹⁴	64
1 × 10 ¹⁵	51
5 × 10 ¹⁵	15

[7] : Gaggl et al., Charge collection efficiency study on neutron-irradiated planar silicon carbide diodes via UV-TCT, 10.1016/j.nima.2022.167218


[8]: Gaggl et al., Performance of neutron-irradiated 4H-silicon carbide diodes subjected to alpha radiation, J. Inst. 18, C01042 (2023)

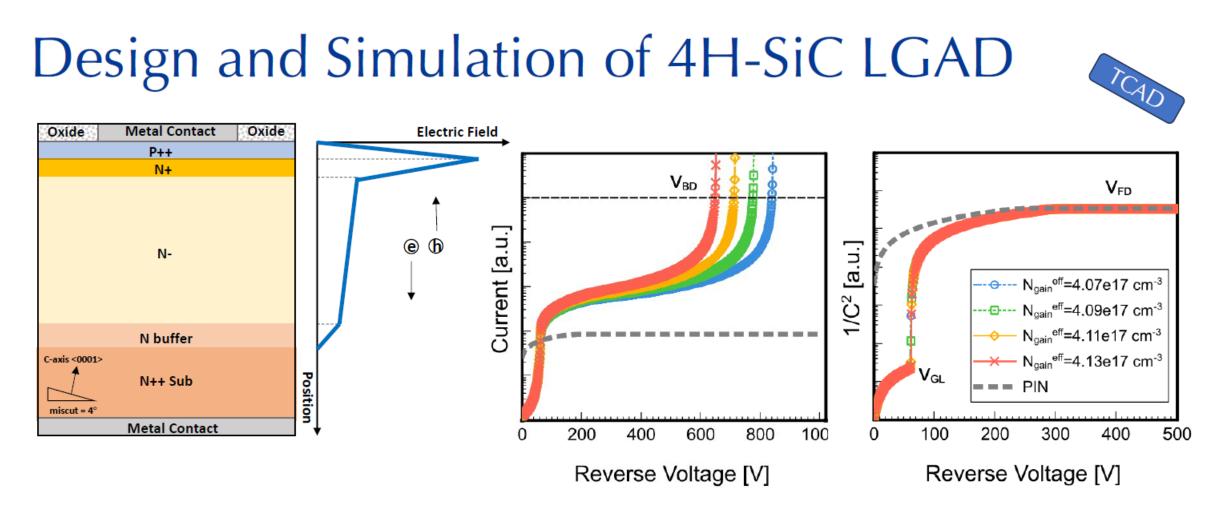
Silicon Carbide: CCE characterisation

DRD3


Alpha measurements

- Signals obtained even at highest fluences, in forward and reverse bias
- · Bias voltage limited by readout
- At highest fluences, forward and reverse bias identical

Silicon Carbide: LGAD


- LGAD : Low Gain Avalanche Diode [16], wide-spread usage for Si
- Attractive for SiC (large signal from thin detectors, timing)
- RD50 common project [17], ongoing work at IHEP / NJU [18-20]
- TCAD studies to optimize design

20.0

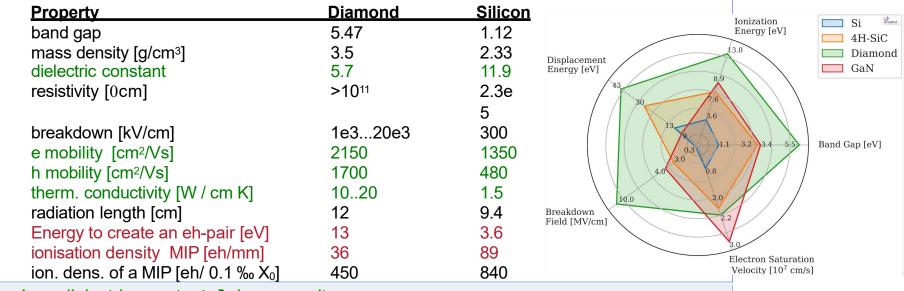
DRD3

 $0.2 \ \mu m$ Gain Implant at $1 \ \mu m$ depth

- "Triangle" Electric Field determined by gain layer doping concentration or depth
- Could reach full depletion less than 500V, with gain larger than 10

https://doi.org/10.1016/j.nima.2023.168677

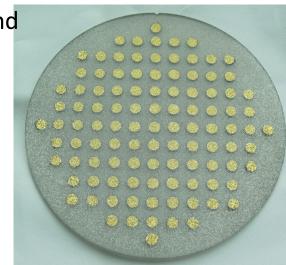
Silicon Carbide: Summary


- 4H-SiC features extremely low leakage currents even after irradiation up to $1\cdot 10^{16}$ n_{eq}/cm^2
- CCE scales with fluence $\propto \Phi_{eq}^{-0.56}$
- Unirradiated devices can be accurately simulated using TCAD
- Ongoing work on SiC LGAD, promising for timing applications
- New wafer production in the pipeline.

This work was supported by the Austrian research promotion agency FFG, project number 883652.

Production and development of the 4H-SiC samples was supported by the Spanish State Research Agency (AEI) and the European Regional Development Fund (ERDF), ref. RTC-2017-6369-3.

material from HEPHY

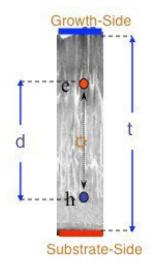

- Low dielectric constant \rightarrow low capacitance
- Low leakage current → low noise
- Room temperature operation
- -MIP signal ~2 smaller at same X_0

- Fast signal collection time

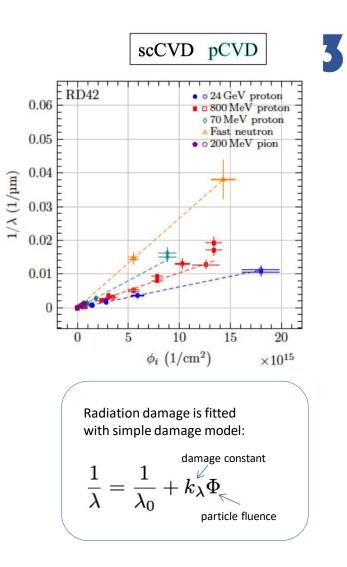
–Efficiency < 100% (pCVD)

DRD3

- Today two main manufacturers of detector grade diamond
 - ElementSix Ltd
 - large polycrystalline wafers
 - single crystal diamonds
 - II-VI Semiconductors
 - large polycrystalline wafers
 - relatively recent entry
- <u>Alternative sources</u>
 - Diamond on Iridium (Dol) (Audiatec, Germany)
 - Hetero-epitaxially grown -> large area
 - Highly oriented crystallites.



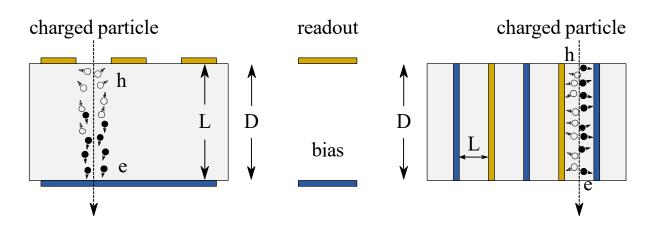
- Impressive progress over the last 25 years.
- Current state of the art for polycrystalline CVD diamond 8 ~ 320 μm in 500um thickness
 - (~11500 e/MIP)
 - commercially available.
 - 1995: 8 ~ 50 μm
 - 2000: 8 ~ 180 μm
 - 2020: 8 ~ 320 μm

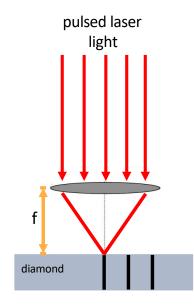


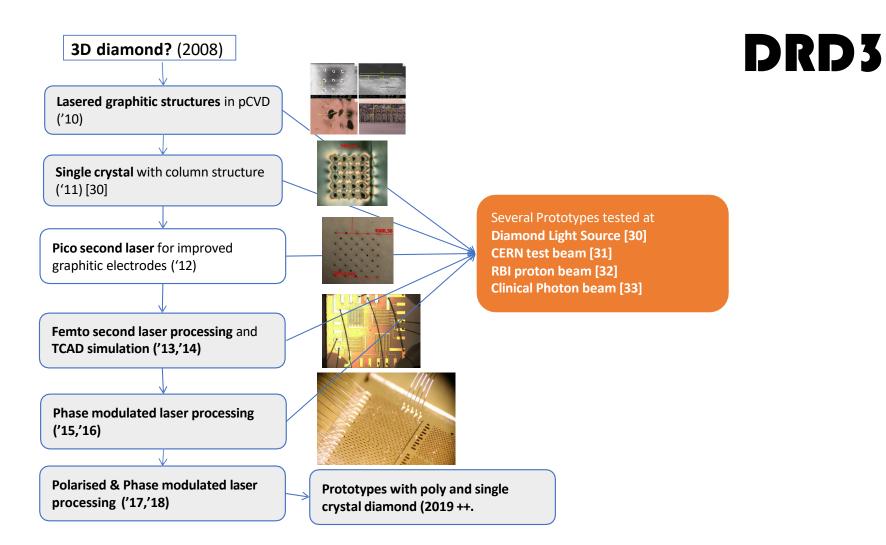
• Summary of RD42 irradiation results:

Irradiation Species	k _i
200 MeV pions	3.2 ± 0.8
Fast neutrons	4.27 ± 0.33
70 MeV protons	2.60 ± 0.27
800 MeV protons	1.67 ± 0.09
24 GeV protons	1

"Back-of-an-envelope calculation, expect Schubweg of: $\aleph \sim 16 \mu m$ at 10^{17} cm⁻² protons_24 GeV_eq

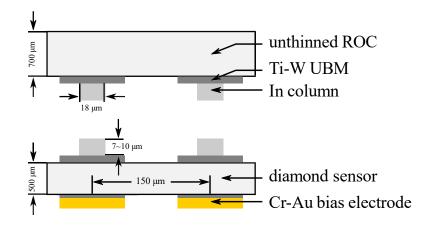

*normalized to 24GeV protons

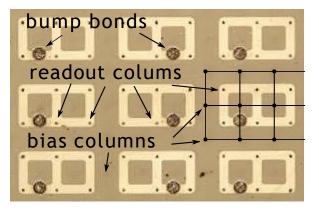



Carrier lifetime challenge – 3D diamond detectors

DRD3

- After large radiation fluence all detectors are trap limited
- Mean free paths $\lambda < 50 \mu m$
- Need to keep drift length (L) smaller than $mfp(\lambda)$
- Build **3D detectors** to reduce transit time.
- Huge progress made in fabrication of 3D diamond detectors in the last 10 years.

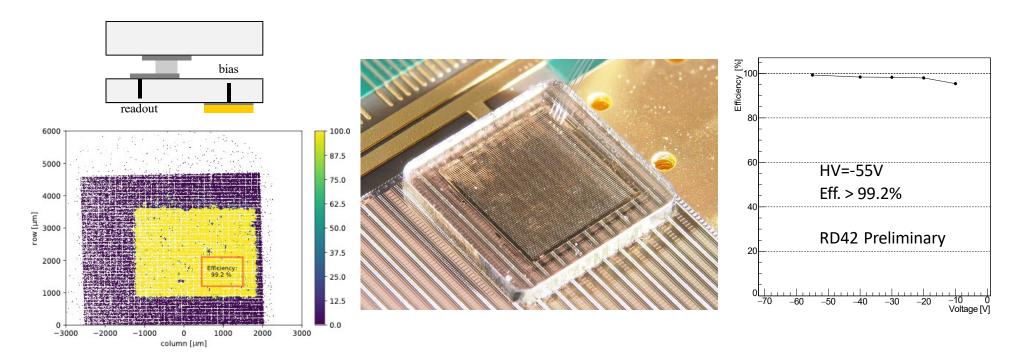




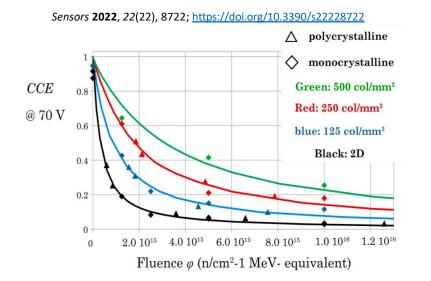
3D Diamond prototypes

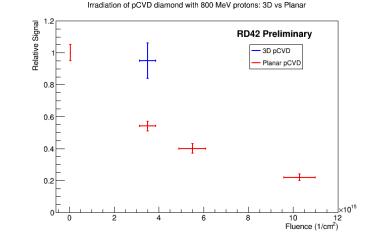
DRD3

• CMS and ATLAS pixel prototypes tested:



3D Diamond prototypes




• CMS and ATLAS pixel prototypes tested:

3D Diamond Radiation Hardness

DRD3

- Few radiation hardness data available, but promising:
 - Compare signal loss in 3D pixels to published results from planar
 - 3D sensors collect twice as much charge when unirradiated
 - 3D sensors see 5±10 % reduction in signal at 3.5 x10¹⁵
 - Planar sensors see 45±5 % reduction for 3.5 x10¹⁵

Outline

- Introduction : electronic properties of WBG Semiconductors
- Growth processes
 - Beyond wafers: the perovskite family
- Lattice disorder, defects and energy levels; how to detect
- Research on WBG Radiation Detectors
 - Explorative studies (blue sky research) in the HEP community
 - Applications in medical field: proton and Flash therapy

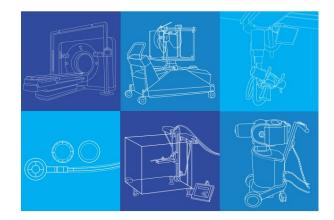
Radiotherapy

A technological solution to a biological problem

External beam radiotherapy (EBRT)

Radiation beams with high energy (X, γ , electrons, protons, ions) produced by radionuclides or particle accelerators

This lesson

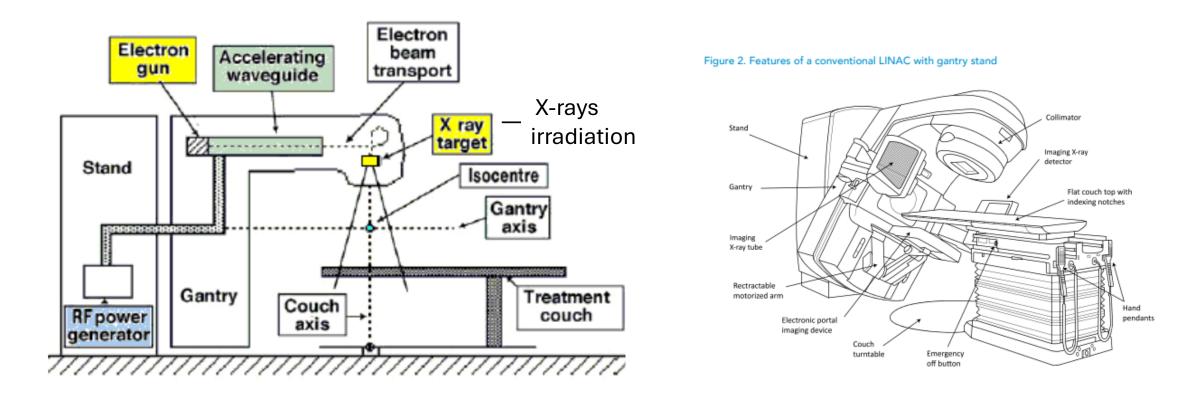

Brachytherapy

Sealed radioactive sources introduced in the body

Methabolic radiotherapy

Non-sealed radioactive sources vehicolated within the body

Technical specifications of radiotherapy equipment for cancer treatment


IAEA

Vorld Health

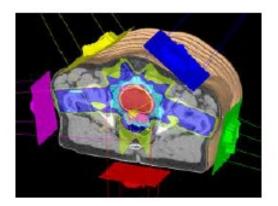
LINAC radiotherapy facility

 LINAC (Linear Accelerator) by means of high frequency (~3 GHz) electromagnetic waves accelerates charged particles at high energy along a linear path

UNIVERSITÀ Degli studi

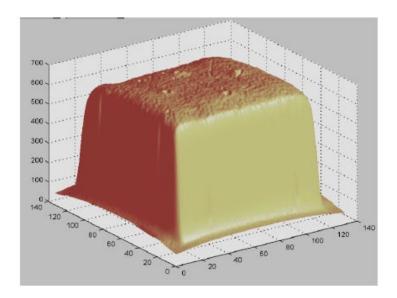
FIRENZE

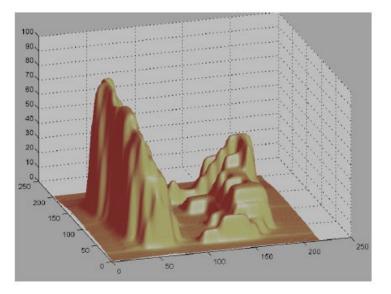
Mara Bruzzi, Wide BandGap Radiation Detectors - status and future perspectives, 24 June 2025



Intensity Modulated Radiation Therapy (IMRT)

Intensity Modulated Radiation Therapy (IMRT) consists in using a few radiation beams, generally from 2 to 9, produced by the same linear accelerator and directed towards the tumor from different angles, in order to concentrate the dose released on the volume of the tumor.

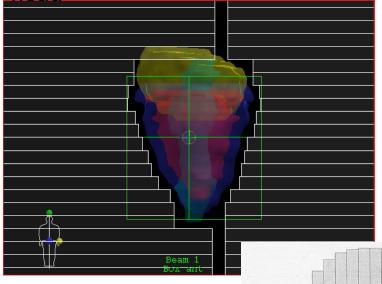


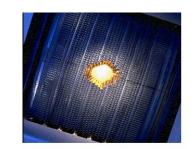


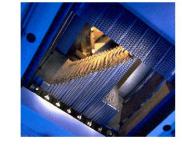
To spare at best surrounding healthy tissues the dose released to the tumor needs to be shaped along an irregular field to be best conformed to the

Flat Dose Map

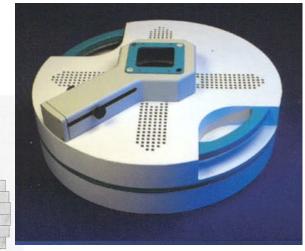
Modulated Intensity Dose Map

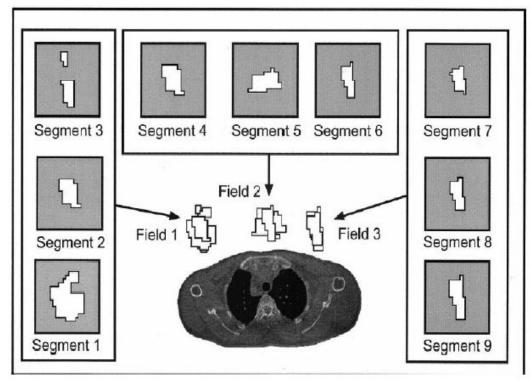


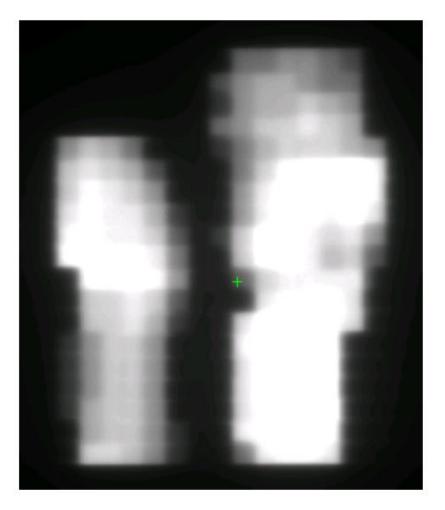

Mara Bruzzi, Wide BandGap Radiation Detectors - status and future perspectives, 24 June 2025



Multi Leaf Collimators (MLC)


The dose conformation is obtained using Multileaf Collimators with sets of mobile lamellas in W mounted externally on the LINAC head



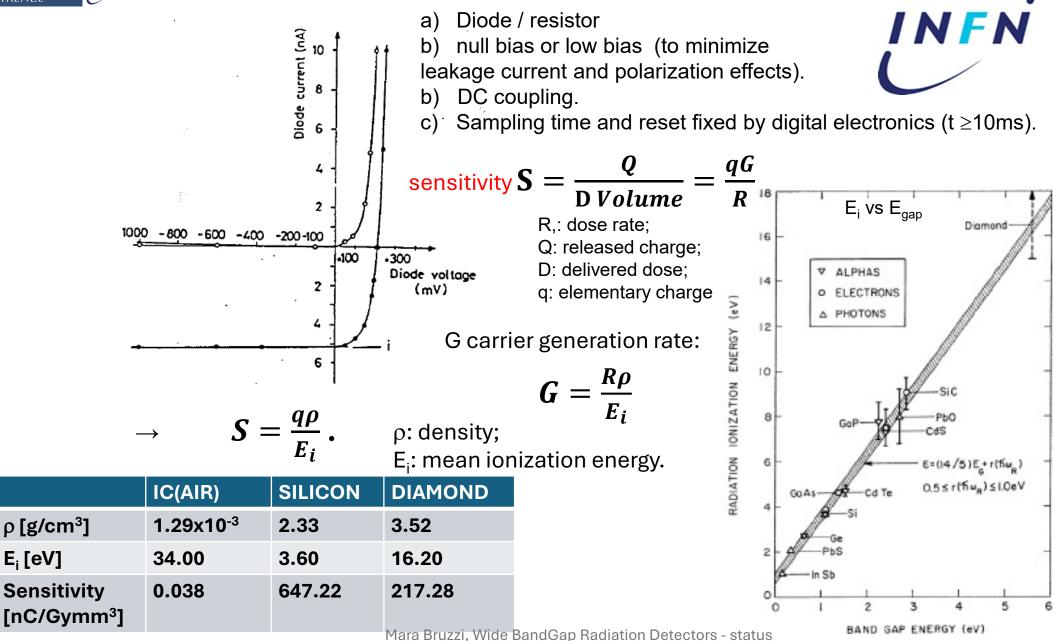


Example: IMRT irradiation in step and shoot modality, the total dose is released as a sum of nine segments. Each segment corresponds to a particular arrangement of the MLC lamellas (left). Beam is off during their movement.

Total dose is obtained as the sum of the dose released by each segment (right).

VMAT (Volumetric Modulated Arc Therapy)

- Able to focus more accurately at tumor tissues, ensuring greater preservation of healthy ones.
- Modulating not only the amplitude and velocity of the MLC, but also rotation speed of the Gantry and Linac dose-rate.
- continuous rotation of the accelerator head during irradiation for maximum focusing of radiation on tumor tissues, which are thus affected by all possible angles.
- □ significantly reducing duration of treatments compared to IMRT: about 5-7 minutes compared to traditional times which are around 20 minutes per session.
- useful when treatment focus must be maximum to preserve nearby organs: tumors of the head / neck, as larynx, pharynx and oral cavity; tumors of the pelvis, as prostate and rectum; tumors of the lung and breast.



FIRENZE

ρ **[g/cm³]**

E_i [eV]

and future perspectives, 24 June 2025

Dosimetry Challenges

Highly accurate imaging and dose verifications systems must match with increased accuracy of the irradiation techniques .

- Response independent of energy;
- small volume and high sensitivity;
- **response independent of dose rate,** continuously changing during VMAT;
- **Real time invivo detectors** european community require dose delivery to be verified experimentally **directly during irradiation** (Article 56 of COUNCIL-DIRECTIVE-2013/59/EURATOM).

State-of-art commercial dosimetric devices used in cl

radiotherapy

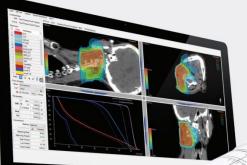
	radiotherapy			INF
	IC (AIR)	SILICON	DIAMOND	
ρ [g/cm ³]	1.29x10 ⁻³	2.33	3.52	
E _i [eV]	34.00	3.60	16.20	
S [nC/Gymm ³]	0.038	647.22	217.28	
Area [mm ²]	25.00	0.64	3.80	
thickness [mm]	5.00	0.03	0.001	
volume [mm ³]	125	0.019	0.0038	
Array	OCTAVIUS	MAPCHECK	-	
	РТЖ	SunNuclear		
Detector	729 PTW	SunPoint®	microDiamond	
		Diode Detector	type 60019 PTW	
Reference	APL Mater. 7.	051101 (2019): doi:	10.1063/1.5083810	

OCTAVIUS® Systems Turnkey Solutions for Patient and Machine QA

Products & Solutions > Radiation Therapy > VMAT QA, IMRT QA, OCTAVIUS, DIAMOND > OCTAVIUS 729 > Specifications

PRODUCTS & SOLUTI	IONS	OCTAVIUS 729	Specifications	Learn more	
 Radiation Therapy Diagnostic Radiology Health Physics 		OCTAVIUS Detector	729		
SERVICES & SUPPOR	T	Detector type:	Plane-parallel	vented ionization	
LITERATURE			chambers	and the second second	
NEWS & EVENTS		Detector design:	cubic		
ABOUT PTW		Number of detectors:	729		
REFERENCE SITES		Detector size:	0.5 cm x 0.5 cn (0.125 cm ³)	n x 0.5 cm	
 DOWNLOAD CENTER ONLINE BROCHURES 		Detector spacing:	10 mm center-t 5 mm edge-to-e	and the second second	
THE DOSIMETRY SCH	HOOL	Max. field size:	27 cm x 27 cm		
CONTACT US		Reproducibility:	$\leq \pm 0.5\%$		
LINKS		Dead time:	zero		
FEEDBACK		Repetition rate:	200 ms		
TEEDBriefe		Measured quantities:	absorbed dose absorbed dose	to water (Gy), rate to water (Gy/mi	
Search	•	Resolution:	0.1 mGy or 0.1	mGy/min	
advanced search		Measurement range:	(0.5 48 Gy/m	(0.5 48 Gy/min)	
		Reference point:	7.5 mm below t array	he surface of the	
		Housing material:	GRP	GRP	
		Dimensions:	30 cm x 42 cm (W x D x H)	x 2.2 cm	
		Weight:	5.7 kg		
		Power supply:	(100 240) VA	AC; (50 60) Hz	
		PC connection:	Ethernet, RS23	2	
		Part No.:	L981378		

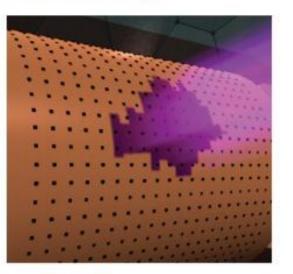
 $\mathsf{OCTAV/IUS}^{\textcircled{0}}$ 729 - 2D ionization chamber array for patient and machine QA with $\mathsf{OCTAV/IUS}$ 2D/4D

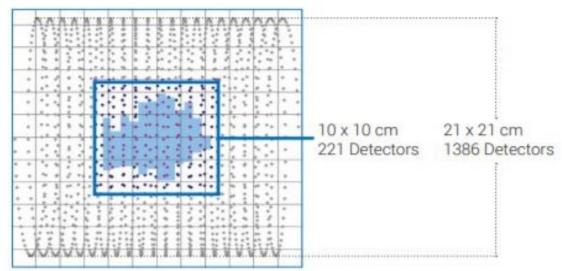


ArcCHECK® & 3DVH®

The Ultimate 4D Patient QA Solution

Helical Detector Grid


Detectors are arranged on a HeliGrid[™] which increases the sampling rate and reduces BEV detector overlap and shadowing.


An ArcCHECK 10 x 10 cm² area contains 221 detectors; equivalent to the detector density in a MapCHECK[®]2
 Entrance and exit dose are measured, effectively doubling the detector density in the measurement field

Beam Delivery

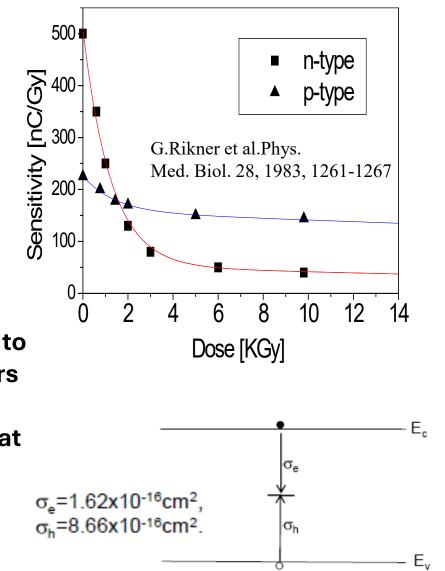
ArcCHECK Detector

INIVERSITÀ FIRENZE **The Silicon Choice**

Advantages:

- High sensitivity (18000 times higher than IC).
- Well developed manufacture technology.
- high spatial resolution.
- work in null bias mode (in-vivo).

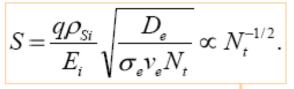
Drawbacks:

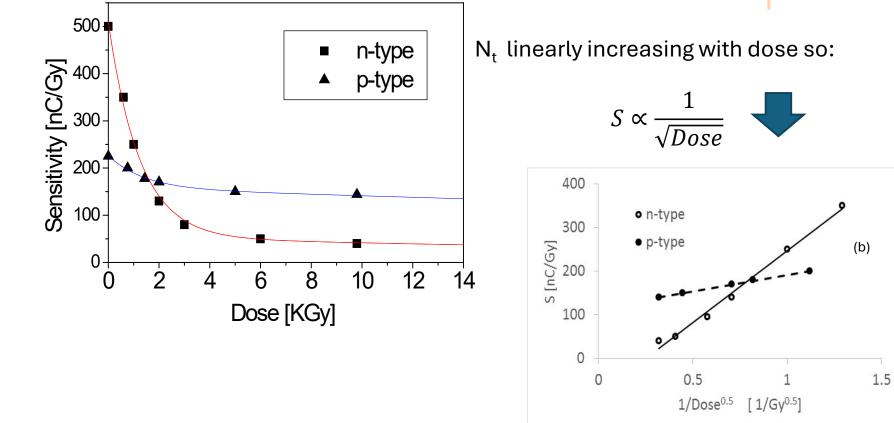

- Sensitivity decrease with accumulated dose due to increase of concentration of recombination centers (recalibrations needed).

- Dose rate dependency due to centers saturation at high dose rates.
- Energy dependence: Si not "water equivalent".

Radiation Resistant?

p-type radiation harder material

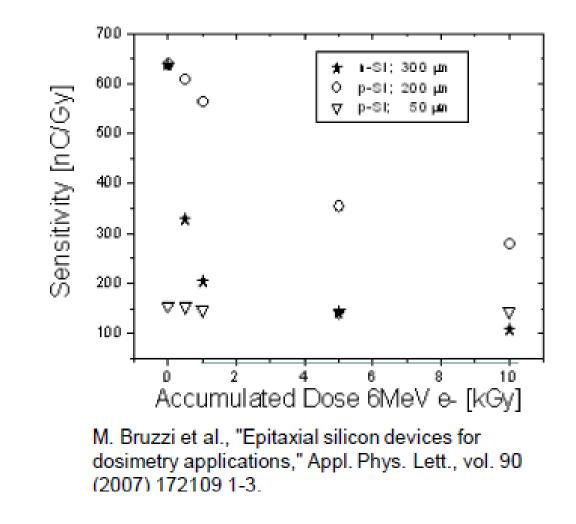

hole capture more efficient -> Lifetime for minority carriers higher in case of electrons.



Radiation damage in standard Si dosimeters (thickness 300um)

Sensitivity as a function of trap concentration in a Si dosimeter

M. Bruzzi, NIMA 809, 2016 Novel Silicon Devices for Radiation Therapy Monitoring, 105-112

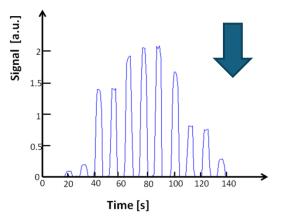

Pre-irradiation (\approx 10kGy) to reduce the dependence of the signal on the dose.

Mara Bruzzi, Wide BandGap Radiation Detectors - status

and future perspectives, 24 June 2025

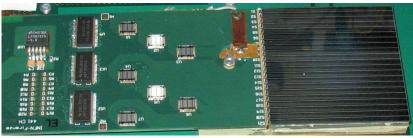
Epitaxial p-type Si on MCz substrates to limit active thickness

Epitaxial Layer used to limit active depth to less than diffusion length


Si bidimensional dosimeter

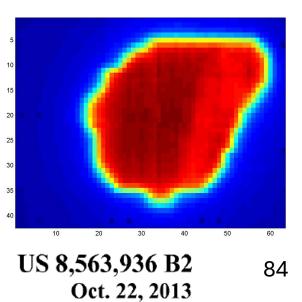
Matrix: 21x21pixels


Pixel: 2x2mm Pitch: 3mm Detector size: 6.3x6.3cm²


Covered area 20×20 cm² ~4k channels

Measured time structure of dose segments

C.Talamonti, M.Bruzzi et al. 2011 Nucl. Instr. Meth A, vol. 658, p. 84-89.



Large area IMRT covered by mosaic composition and/or shifting modules along x-y axes.

Dose map of an IMRT field for prostate cancer as measured by the Epi-Si 2D silicon dosimeter.

(10) Patent No.:(45) Date of Patent:

The Diamond Choice

RENZE

INFN

water equivalent

it doesn't perturb the radiation field \rightarrow small fields

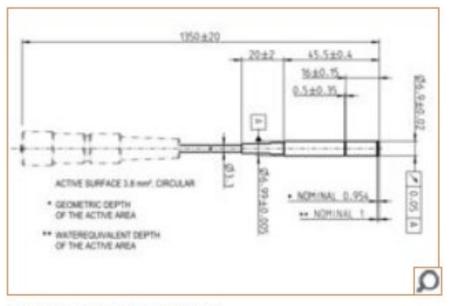
the energy is absorbed as in the water \rightarrow no correction factors

- high radiation hardness \rightarrow long term stability
- high density → high sensitivity → small dimensions
- non toxic

■ it can be used as TL dosimeter (off-line) or for on-line applications

material	Ζ
Air	7.78
Water	7.51
Muscle	7.64
Fat	6.46
bone	12.31
С	6
Si	14
SiC	≈10

Nearly as good as water.

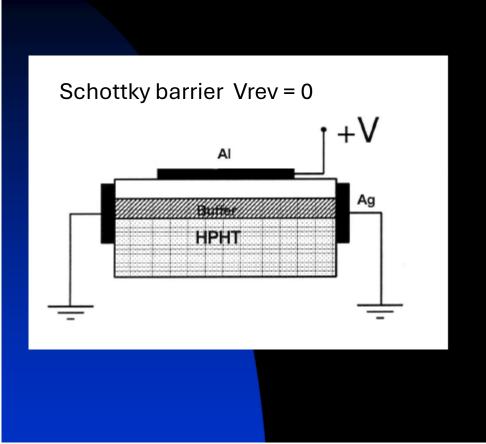

microDiamond

Key Features

- Nearly water equivalent for all beam energies
- Very small sensitive volume (0.004 mm³) perfect choice for small field dosimetry
- Suitable for all field sizes up to 40 cm x 40 cm
- Precise, accurate measurements in photon, electron and proton fields
- Excellent radiation hardness, minimal energy, temperature and directional dependence
- No high voltage required. Suitable for all connecting systems (BNT, TNC, M)

▶ Type No.	60019
Design:	waterproof, disk-shaped, sensitive volume perpendicular to detector axis
Measuring quantity:	absorbed dose to water
Nominal sensitive volume:	0.004 mm³, radius 1.1 mm, thickness 1 μm
Reference point:	on detector axis, 1 mm from detector tip, marked by ring
Nominal response:	1 nC/Gy
Detector bias:	0 V
Radiation quality:	100 keV 25 MV photons (6 25) MeV electrons (70 230) MeV protons
Field size:	(1 x 1) cm ² (40 x 40) cm ²
Connectors:	BNT, TNC or M

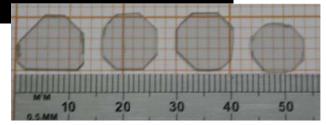
microDiamond Synthetic Diamond Detector



microDiamond Detector Design

Single Crystal Diamond Dosimeter

device manufactured by Università di Roma Tor Vergata



•HPHT p+ boron doped substrate - 300 µm thick

- •35 µm thick p+ buffer layer (CVD)
- •Active epilayer 17 μ m thick

•Al 100 nm ϕ 2mm upper electrode

•Buffer layer contacted at the perifery with Ag paste

Problem : No large area array available

The Polycrystalline diamond Choice

it is almost water equivalent it doesn't perturb the radiation field \rightarrow small fields the energy is absorbed as in the water \rightarrow no correction factors ■ high radiation hardness → long term stability limits \rightarrow high sensitivity \rightarrow small dimensions non toxic **Polycrystalline CVD** diamond **Natural diamond** ability to produce large area wafers of 3-5" very high production Single crystal CVD costs, difficult to select persistent currents due to (Chemically Vapour stones with proper trapping \rightarrow slow dynamics **Deposited**) diamond dosimetric response grown on HPHT diamond, not available in G

large areas

polycrystalline diamond segmented dosimeter prototype made in Florence

- Material

- Up to three polycrystalline diamond films
- $2.5x2.5cm^2$ active area each, $300\mu m$ thick;
- Premium Detector Grade Element Six, UK

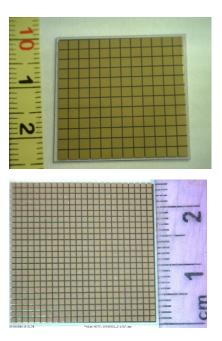
- Contacts

- Schottky Barriers produced @ University of Florence
- •12 x 12 matrix, pixel size: 1.8x1.8 mm² \rightarrow 288 pixels in total

- Read Out Electronics

four 64 channels 20 bit current-input analog to digital converter chips able of measuring currents from fAs to mAs; 160μs-1s integration time (50ms)
custom printed circuit board;

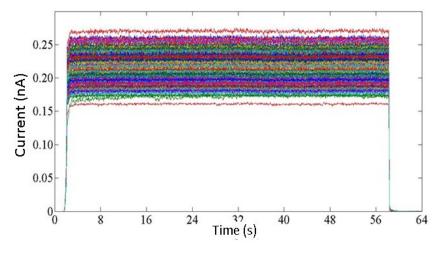
•semi-rigid silver-polymer pin-contacts produced by us connecting each pixel of the 144 matrix connecting vias on PCB .


-Measurement

•Low voltage to get fast and reproducible signals;

•Device can be moved in x-y directions to cover a

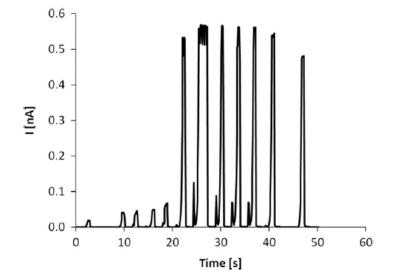
•wider radiation field area.



Performance under conventional and IMRT radiotherapy beam

Current response of all pixels in a conventional X-ray beam ($V_{app} = 1V$) Dose-rate 50 Mu/min

Bartoli et al. 2017 JINST 12 C03052

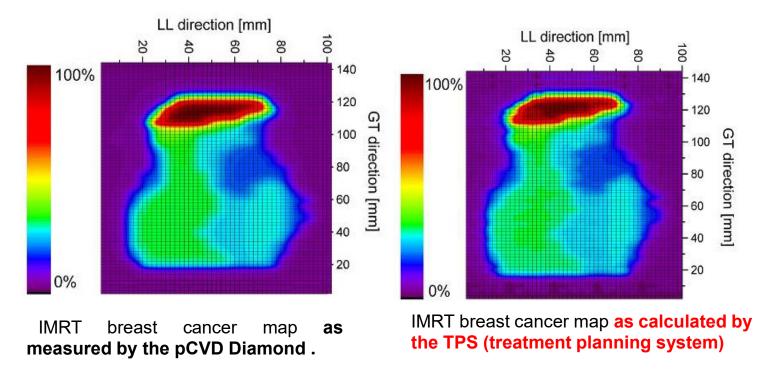

- ✓ negligible dark current → high S/N
- ✓ negligible polarization effects → stable response , fast dynamics

Mara Bruzzi, Wide BandGap Radiation Detectors - status and future perspectives, 24 June 2025

Current response of one pixel under an IMRT beam in step and shoot modality

INFN

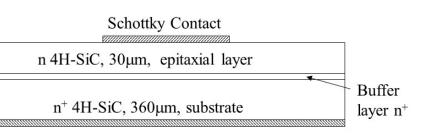
Fig. 5. Time structure of the IMRT segments as measured by one of the pCVD diamond pixels under an IMRT prostate cancer treatment.


M. Scaringella et al.

Nuclear Instruments and Methods in Physics Research A 796 (2015) 89-92

First IMRT map with Diamond Device

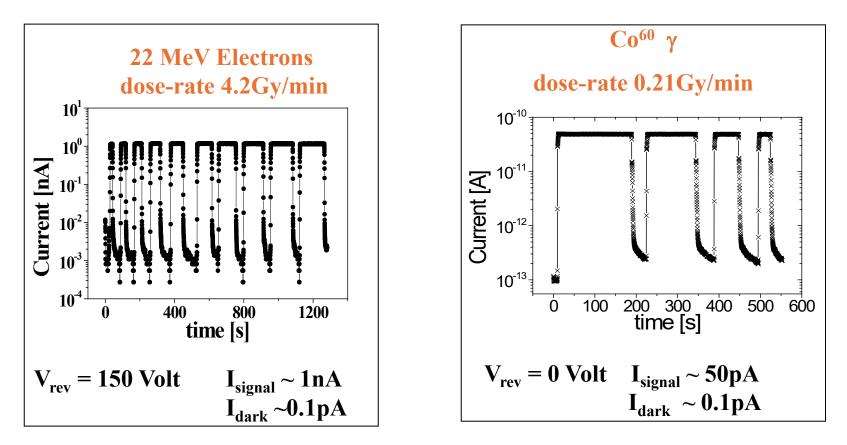
2.5x2.5cm² pCVD Diamond prototype IMRT map 14x10cm² measured by shifting the diamond dosimeter


(GT = gantry target direction; LL = lateral-lateral direction) Grid spacing 3 mm.

M. Scaringella et al. / Nuclear Instruments and Methods in Physics Research A 796 (2015) 89–92

 \odot

Low Leakage Current Working without applying bias Very low active volume Fast Response More tissue equivalent than Si



material	Ζ
Air	7.78
Water	7.51
Muscle	7.64
Fat	6.46
bone	12.31
С	6
Si	14
SiC	≈10

4H-SiC - Dosimetric Characterisation

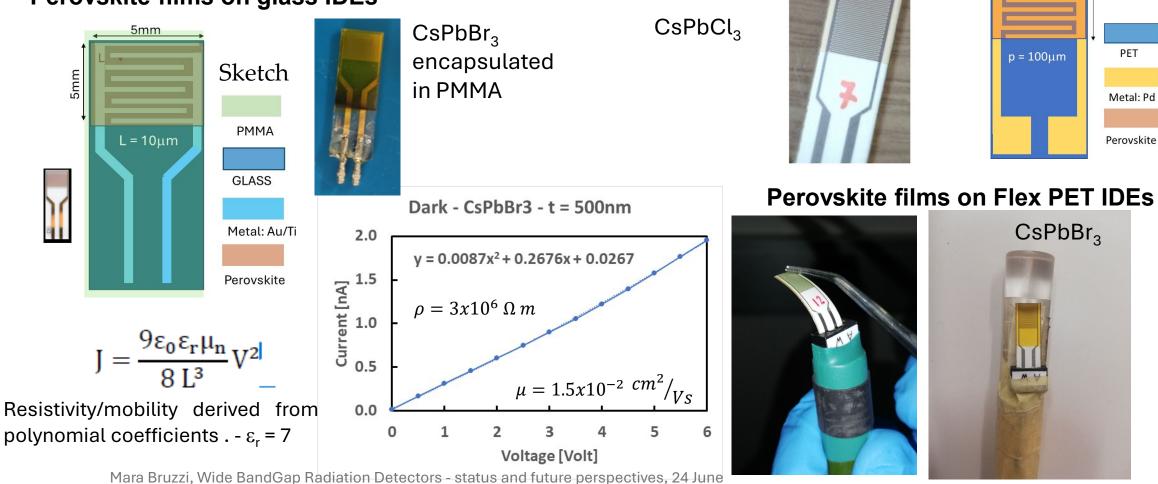
Stable signal - high S/N ratio - no priming effects

M. Bruzzi, F. Nava, S. Pini, S. Russo, App. Surf. Sci, 184 (2001) 425-430

Comparison between Epitaxial SiC and standard dosimeters

Device	bias [V]	Vol. [mm ³]	S [nC/Gy]	S per unit volume
Standard Farmer Ionisation chamber	300	600	21.5	[nC/(Gy·mm ³)] 0.036
Miniature Farmer Ionisation chamber	300	50	1.38	0.028
Scanditronix GR-p BS Silicon	0	0.295	140	474
Scanditronix SFD stereotactic Silicon	0	0.017	6	353
Epitaxial SiC diode	0	0.0415	14.1	340

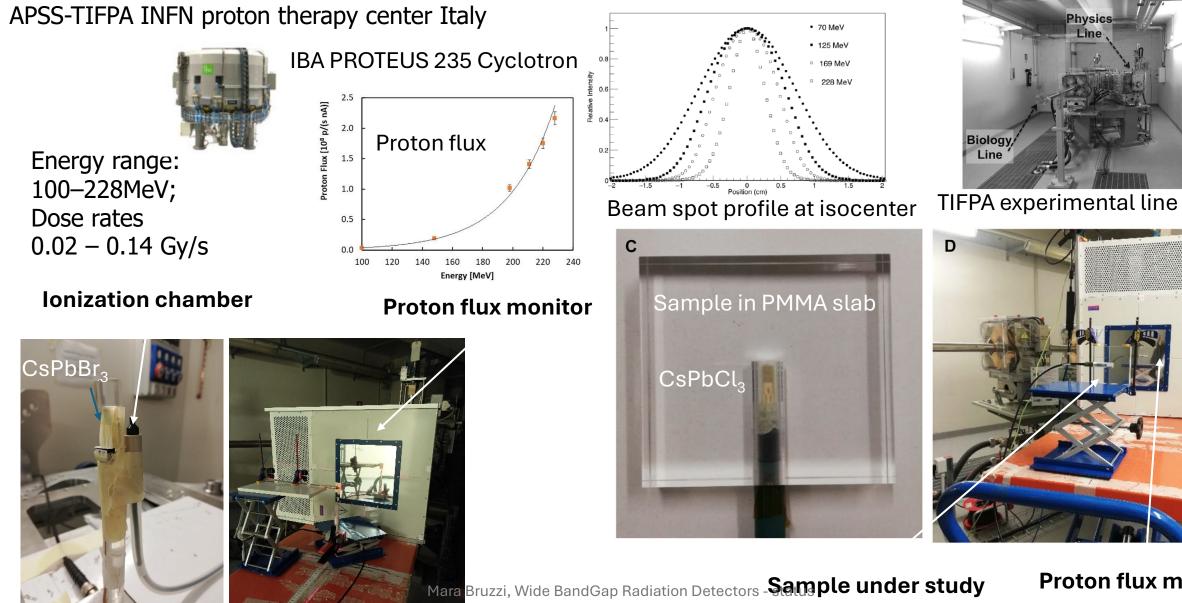
CsPbBr₃/CsPbCl₃ thin films Room temperature magnetron sputtering (MS)


mm

Sketch

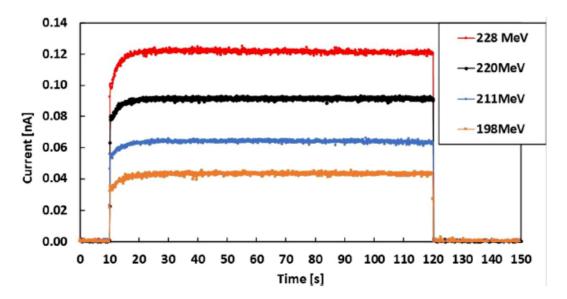
5mm

- \Box 300nm -1 μ m-thick
- \Box Substrates flexible (PET \approx 100 μm) and glass interdigitated electrodes (IDE) Pd Au/Ti
- \Box intercontact distance 10-100 μ m.

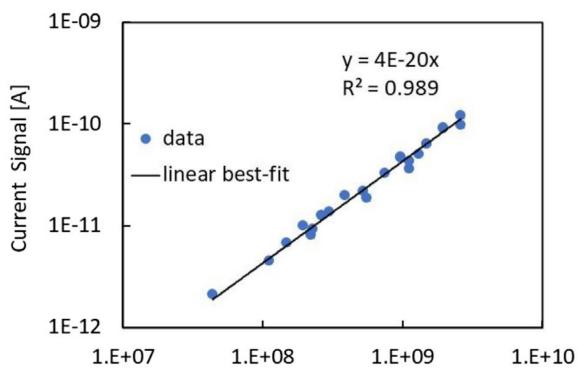


Measurements under test beam at Trento Proton Therapy facility

Proton flux monitor

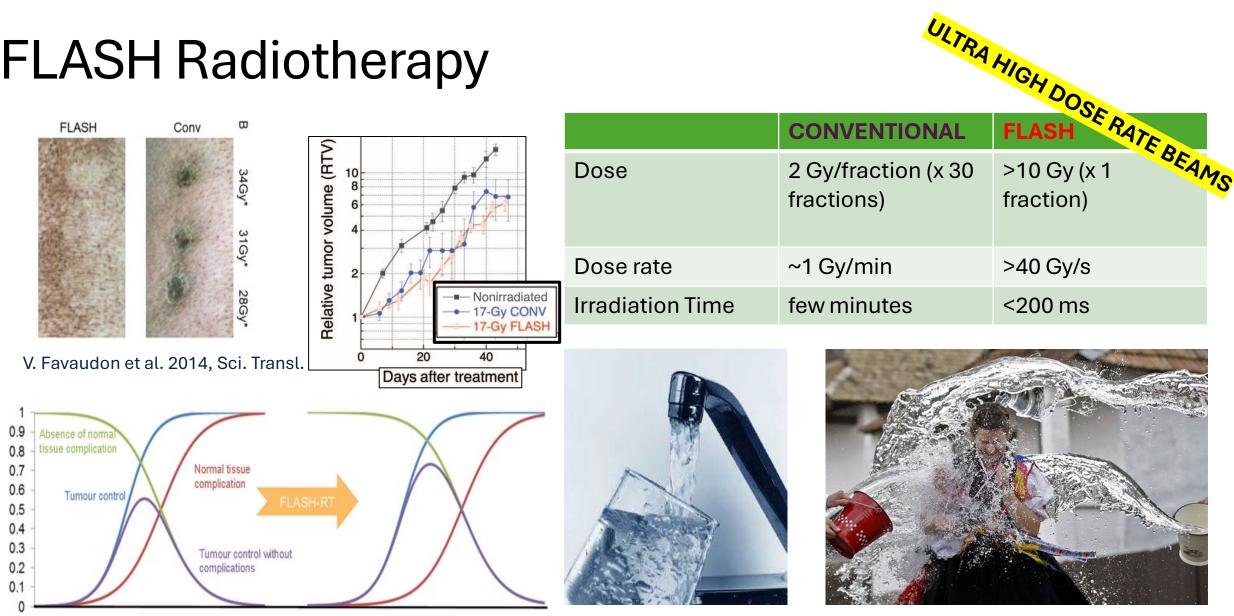

and future perspectives, 24 June 2025

Current vs Proton flux proton therapy facility Linearity plot CsPbCl₃

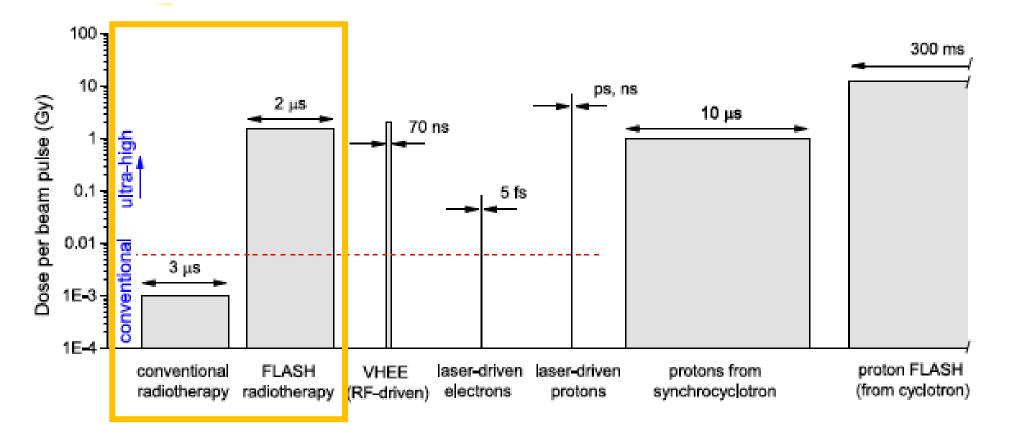


1µm-thick CsPbCl₃ on IDE/Pd substrate, L = 100µm as a function of time for different proton beam energies; Vbias = 2 V.

Average current measured by the 1 μ m-thick CsPbCl3 IDE/Pd as a function of the proton flux impinging on the detector area, measured 100–228 MeV and 1–10 nA proton beam. Best-fit to data shows a linear trend.


M Bruzzi, N Calisi, N Enea, E Verroi, A Vinattieri <u>Flexible CsPbCl₃ inorganic perovskite thin-film detectors for real-time</u> <u>monitoring in protontherapy</u> Frontiers in Physics 11, 1126753 Mara Bruzzi, Wide BandGap Radiation Detectors - status and future perspectives, 24 June 2025

proton flux [p/s]


$CsPbCl_3$ thin film 1µm suitable as proton flux monitor in proton therapy application

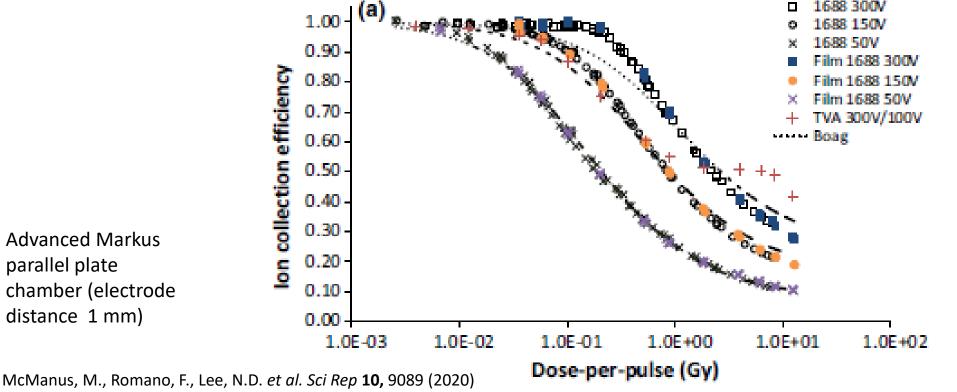
FLASH Radiotherapy

Ultra high dose rate beams pulse time structure

RENZE

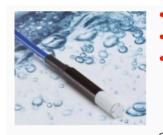
Physica Medica 80 (2020) 134–150

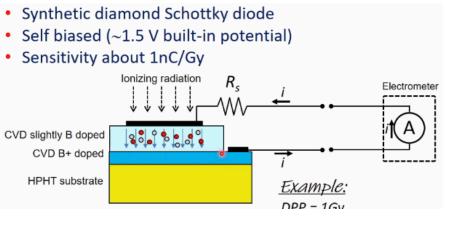
Multidisciplinary Center for the Development and Implementation of Flash Radiotherapy (CPFR)



SIT ELECTRONFLASH 4000 Dose rate 4000 Gy/s Electrons 9 MeV Triode gun 1 cm Ø smallest applicator

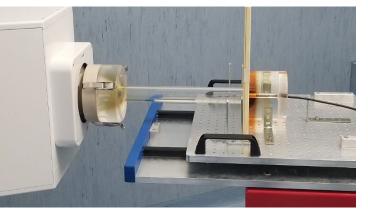
Ionization chamber crisis in ultra high dose rate

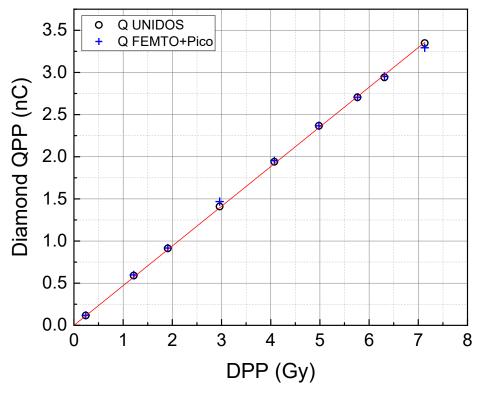

The measurement of commercial chambers in UHDR showed that **general or volume recombination effect was very large compromising the usability of these standards**



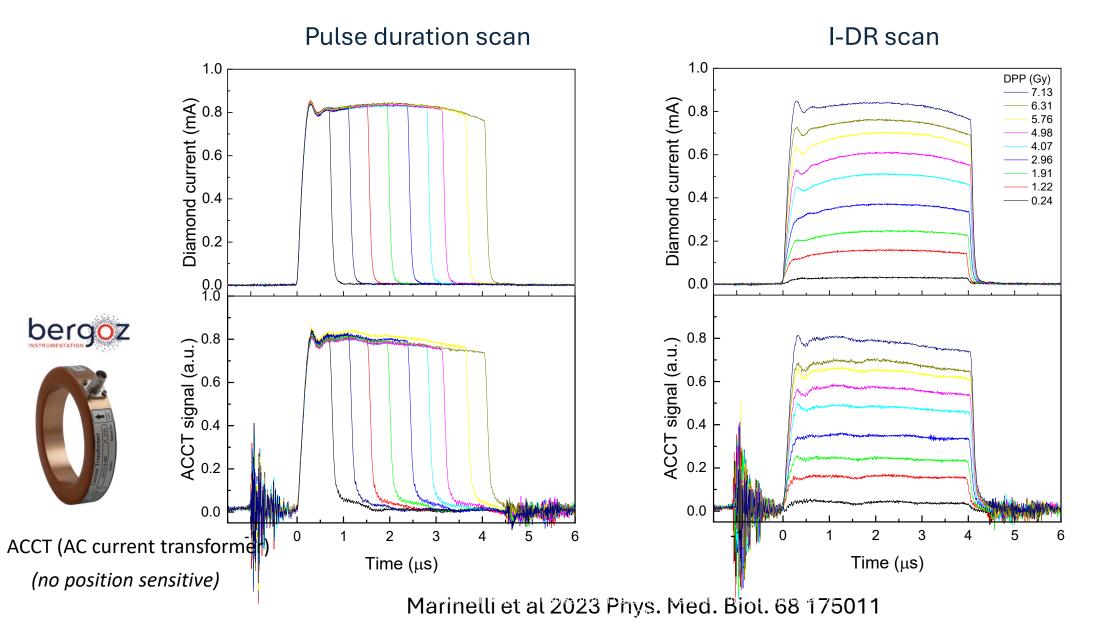
Rafael Kranzer et al. Med Phys; 48(2): 819-830 (2020)

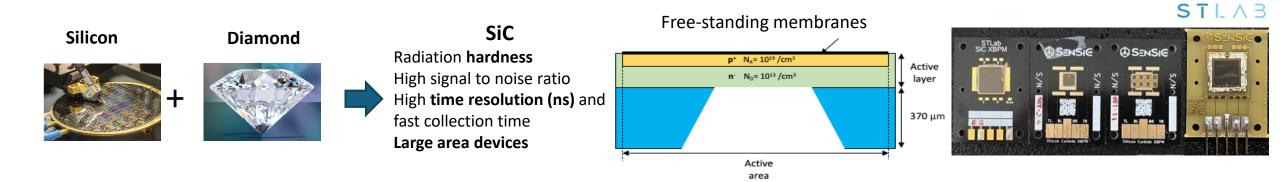
Courtesy of F. Gomez, USC


FLASHDiamond



Courtesy of A. Marinelli and G. Verona Rinati, Roma "Tor Vergata" and PTW

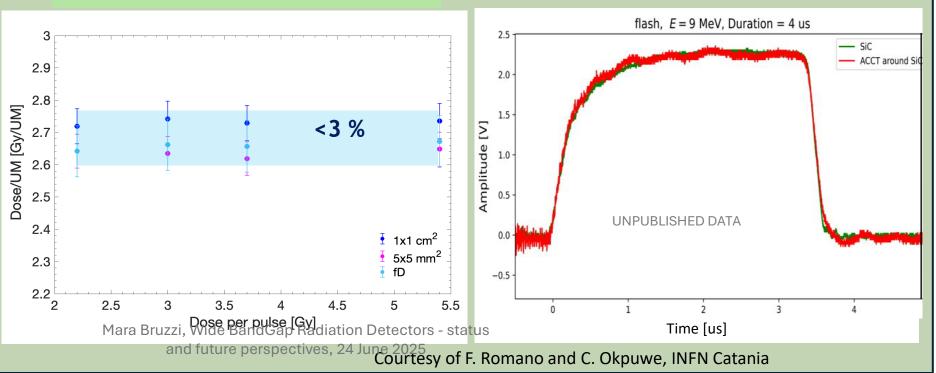



Marinelli et al 2023 Phys. Med. Biol. 68 175011

Facility	Sensitivity (nC/Gy)
PTW (⁶⁰ Co)	0.465
CPFR (9 MeV electrons)	0.470

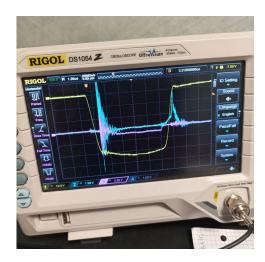
Instantaneous Dose Rate

Silicon carbide detectors

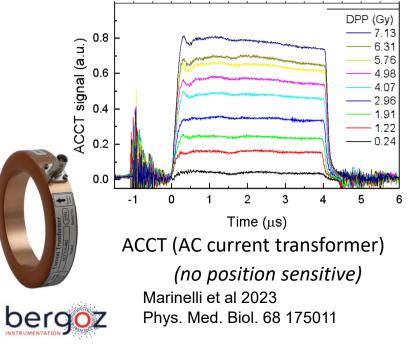


FULL DOSIMETRIC CHARACTERIZATION WITH UHDR ELECTRON BEAMS

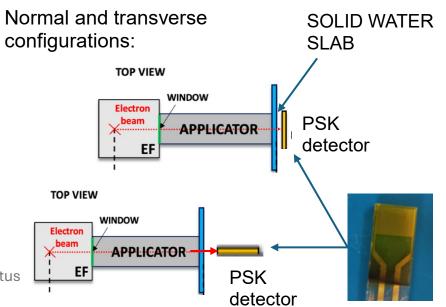
F. Romano et al., Appl. Sci. 2023, 13, 2986. G. Milluzzo et al., Medical Physics 2024 C. Okpuwe et al, 2024 JINST 19 C03064

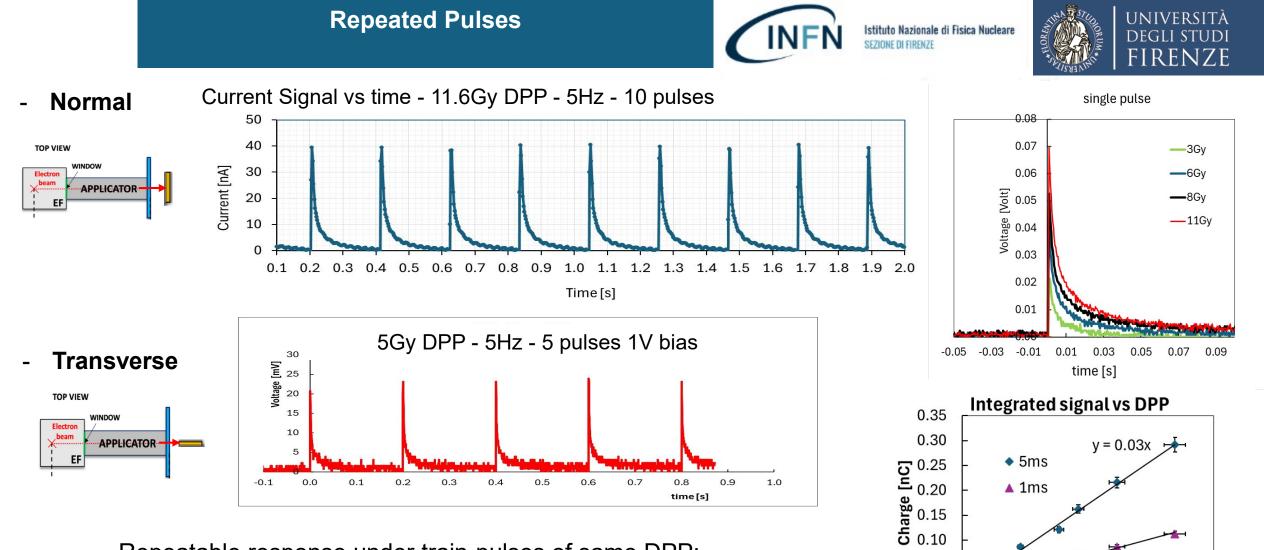

COMPARISON WITH FLASH DIAMOND

Perovskite detectors at electronFlash linac at CPFR (Pisa Italy)


- 9 MeV electron beams
- 4µs long pulses
- Single pulse and different pulse frequencies (1-200 Hz).
- Different Dose per pulse (DPP) 0.2 11.6 Gy
- Pulse during irradiation investigated by oscilloscope monitoring
- Real-time current monitoring during repeated pulses Keithley 6517B
- Sample Bias 1-4V

Trigger


Single pulse: 4µs - different DPP



Mara Bruzzi, Wide BandGap Radiation Detectors - status and future perspectives, 24 June 2025

Perovskite detector under irradiation at LINAC 9MeV electron beam at Pisa CPFR

y = 0.01x

12

9

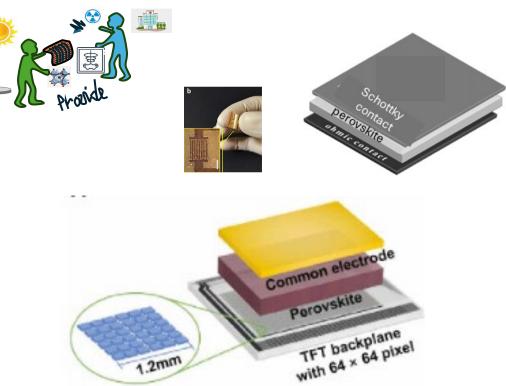
Dose per pulse [Gy]

0.05

0.00

0

- Repeatable response under train-pulses of same DPP;
- Signal Response with S/N > 10 at any DPP;
- Integrated Charge linear with DPP in entire DPP range;
- Transverse configuration possible, increased spatial resolution



PROVIDE - PeROVskIte DEtectors for innovative strategies in radiation therapy and diagnostics

A project funded by INFN Istituto Nazionale di Fisica Nucleare CSN5 Technologic Research 2025-2027

INFN-Bologna, Firenze, Lecce, Pisa, TIFPA-Trento

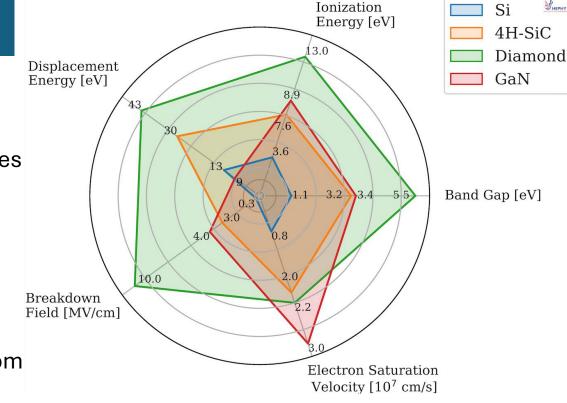

- Best match of perovskite vs electrodes materials / geometry
- Schottky barrier detectors for fast / efficient charge collection
- Single-event perovskite thin film detectors
- pixelated detectors matrices for 2D/3D dose distributions on a few cm² scale
- HP based scintillator detectors on flexible substrates for bendable and fast X-ray imaging;
- HP based metascintillators for TOF-PET application.
- Fix radiation hardness requirements for RT&D;
- Radiation Damage Characterization.

Figure-of merit	state-of-art	this project
Time resolution	10-40ms	0.1 us
Active size (single pixel)	5mm	500µm
Sensitivity	10 - 50 μC/Gy/cm2	100 - 500 μC/Gy/cm2
Active thickness	0.1-10 μm	0.1-10 μm
Field of view matrix	2 cm array	3x3 cm ²

□ Wide bandgap materials are promising to address the challenges of future particle physics experiments.

INFN

Istituto Nazionale di Fisica Nucleare

- Common properties are superior displacement energy and charge carrier velocities, translating to radiation hardness and speed.
- Synergy with industry trends allows particle physics to profit from exciting new developments in this field.
- □ A variety of deposition techniques tailoring specific requirements now available
- □ Already established results in the field of radiation detectors for radiotherapy (UHDR FLASH, protons)