Strain Gage measurements

M.Testa, M Beretta,

B. Buadze, Z. Chubinidze,

S. Serafino, G. Papalino

Strain Gage: Intro

Strain gage measure the strain

- $\varepsilon_{i} = \Delta L_{i} / L_{i}$
- $\Delta R_i / R_i = K \epsilon_i$
- K ~ 2 is the gage factor
- L_i ~ 7mm is the strain-gage length

$$\left(\frac{\Delta R}{R_0}\right)_{T/O} = \left[\beta_G + F_G\left(\frac{1 + K_t}{1 - \nu_0 K_t}\right) (\alpha_S - \alpha_G)\right] \Delta T \tag{1}$$

where, in consistent units:

$$\left(\frac{\Delta R}{R_0}\right)_{T/O}$$
 = unit change in resistance from the initial reference resistance, R_0 , caused by change in temperature resulting in thermal output.

 β_G = temperature coefficient of resistance of the grid conductor.

 F_G = gage factor of the strain gage.†

 K_t = transverse sensitivity of the strain gage.

 ν_0 = Poisson's ratio (0.285) of the standard test material used in calibrating the gage for its gage factor.

MATERIAL	EXPANSION COEFFICIENTS**		RECOMMENDED
DESCRIPTION	Per °F	[Per °C]	S-T-C NUMBER
ALUMINA, fired	3.0	[5.4]	03
ALUMINUM Alloy , 2024-T4*, 7075-T6	12.9	[23.2]	13*
BERYLLIUM, pure	6.4	[11.5]	06
BERYLLIUM COPPER, Cu 75, Be 25	9.3	[16.7]	09
BRASS, Cartridge, Cu 70, Zn 30	11.1	[20.0]	13
BRONZE, Phosphor, Cu 90, Sn 10	10.2	[18.4]	09
CAST IRON, gray	6.0	[10.8]	06
COPPER, pure	9.2	[16.5]	09
GLASS, Soda, Lime, Silica	5.1	[9.2]	05
INCONEL, Ni-Cr-Fe alloy	7.0	[12.6]	06
INCONEL X, Ni-Cr-Fe alloy	6.7	[12.1]	06
INVAR, Fe-Ni alloy	0.8	[1.4]	00
MAGNESIUM Alloy*, AZ-31B	14.5	[26.1]	15*
MOLYBDENUM*, pure	2.7	[4.9]	03*
MONEL, Ni-Cu alloy	7.5	[13.5]	06
NICKEL-A, Cu-Zn-Ni alloy	6.6	[11.9]	06
QUARTZ, fused	0.3	[0.5]	00
STEEL Alloy, 4340	6.3	[11.3]	06
STEEL, Carbon, 1008, 1018*	6.7	[12.1]	06*
STEEL, Stainless, Age Hardenable (17-4PH)	6.0	[10.8]	06
STEEL, Stainless, Age Hardenable (17-7PH)	5.7	[10.3]	06
STEEL, Stainless, Age Hardenable (PH15-7Mo)	5.0	[9.0]	05
STEEL, Stainless, Austenitic (304*)	9.6	[17.3]	09*
STEEL, Stainless, Austenitic (310)	8.0	[14.4]	09
STEEL, Stainless, Austenitic (316)	8.9	[16.0]	09
STEEL, Stainless, Ferritic (410)	5.5	[9.9]	05
TIN, pure	13.0	[23.4]	13
TITANIUM, pure	4.8	[8.6]	05
TITANIUM Alloy, 6AL-4V*	4.9	[8.8]	05*
TITANIUM SILICATE*, polycrystalline	0.0	[0.0]	00*
TUNGSTEN, pure	2.4	[4.3]	03
ZIRCONIUM, pure	3.1	[5.6]	03

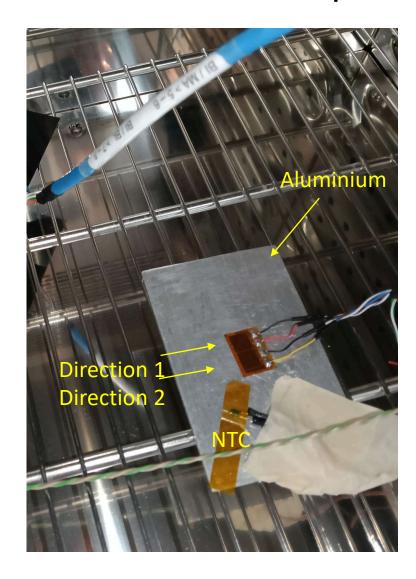
^{*} Indicates type of material used in determining thermal output

Strain Gage: Methodology

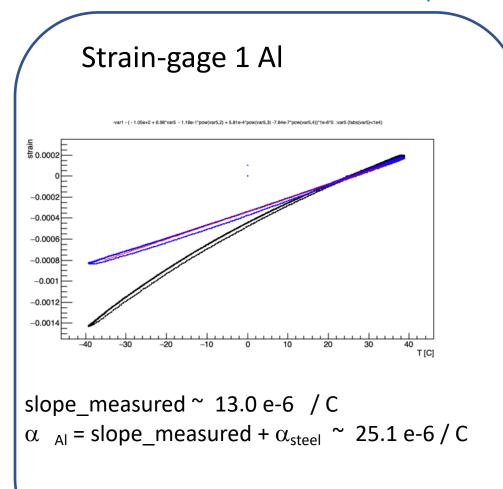
In our samples thermal output vs T given for Steel 1018

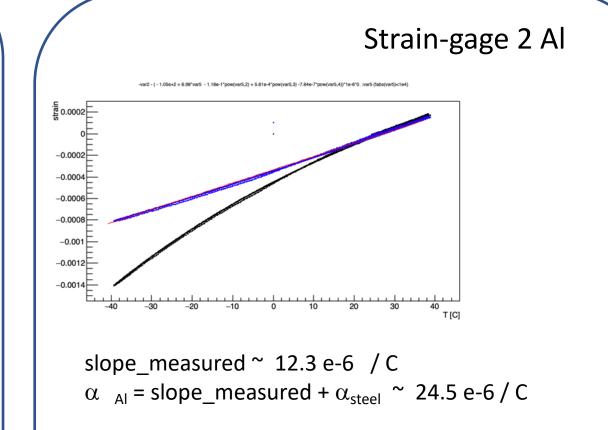
$$\epsilon_{TO} = \left(\frac{\beta_G}{F_G} - \alpha_G\right) \Delta T + \alpha_S \Delta T \qquad \epsilon = \Delta L / L$$

For Another material X:

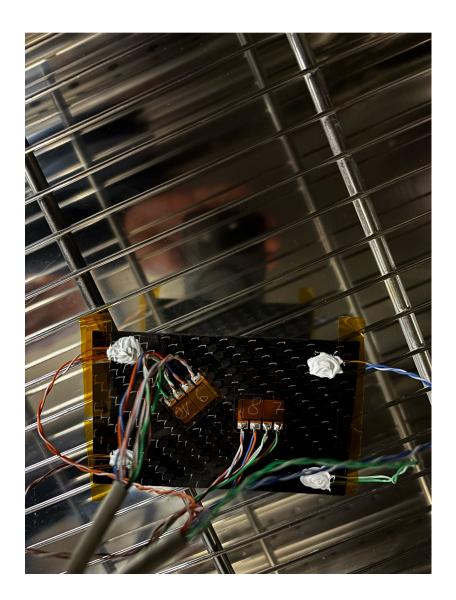

$$\epsilon_{x} = \left(\frac{\beta_{G}}{F_{G}} - \alpha_{G}\right) \Delta T + \alpha_{x} \Delta T$$

- ε_X $\varepsilon_{T/O}$ = $(\alpha_X \alpha_{steel}) \Delta T$
 - The subtraction removes the thermal response of the strain gage and leaves just the part that depends on the substrate
- Measure ε_X as a function of T
- Fit ε_X $\varepsilon_{T/O}$ vs T


MATERIAL	EXPANSION COEFFICIENTS**		RECOMMENDED
DESCRIPTION	Per °F	[Per °C]	S-T-C NUMBER
ALUMINA, fired	3.0	[5.4]	03
ALUMINUM Alloy , 2024-T4*, 7075-T6	12.9	[23.2]	13*
BERYLLIUM, pure	6.4	[11.5]	06
BERYLLIUM COPPER, Cu 75, Be 25	9.3	[16.7]	09
BRASS, Cartridge, Cu 70, Zn 30	11.1	[20.0]	13
BRONZE, Phosphor, Cu 90, Sn 10	10.2	[18.4]	09
CAST IRON, gray	6.0	[10.8]	06
COPPER, pure	9.2	[16.5]	09
GLASS, Soda, Lime, Silica	5.1	[9.2]	05
INCONEL, Ni-Cr-Fe alloy	7.0	[12.6]	06
INCONEL X, Ni-Cr-Fe alloy	6.7	[12.1]	06
INVAR, Fe-Ni alloy	0.8	[1.4]	00
MAGNESIUM Alloy*, AZ-31B	14.5	[26.1]	15*
MOLYBDENUM*, pure	2.7	[4.9]	03*
MONEL, Ni-Cu alloy	7.5	[13.5]	06
NICKEL-A, Cu-Zn-Ni alloy	6.6	[11.9]	06
QUARTZ, fused	0.3	[0.5]	00
OTEEL Alley, 1010	6.0	[11.0]	- 66
STEEL, Carbon , 1008, 1018*	6.7	[12.1]	06*
STEEL, Stainless,	8.8	[10.0]	- 00
Age Hardenable (17-4PH)			
STEEL, Stainless, Age Hardenable (17-7PH)	5.7	[10.3]	06
STEEL, Stainless, Age Hardenable (PH15-7Mo)	5.0	[9.0]	05
STEEL, Stainless, Austenitic (304*)	9.6	[17.3]	09*
STEEL, Stainless, Austenitic (310)	8.0	[14.4]	09
STEEL, Stainless, Austenitic (316)	8.9	[16.0]	09
STEEL, Stainless, Ferritic (410)	5.5	[9.9]	05
TIN, pure	13.0	[23.4]	13
TITANIUM, pure	4.8	[8.6]	05
TITANIUM Alloy, 6AL-4V*	4.9	[8.8]	05*
TITANIUM SILICATE*, polycrystalline	0.0	[0.0]	00*
TUNCCTEN	2.4	[4.3]	03
TUNGSTEN, pure			

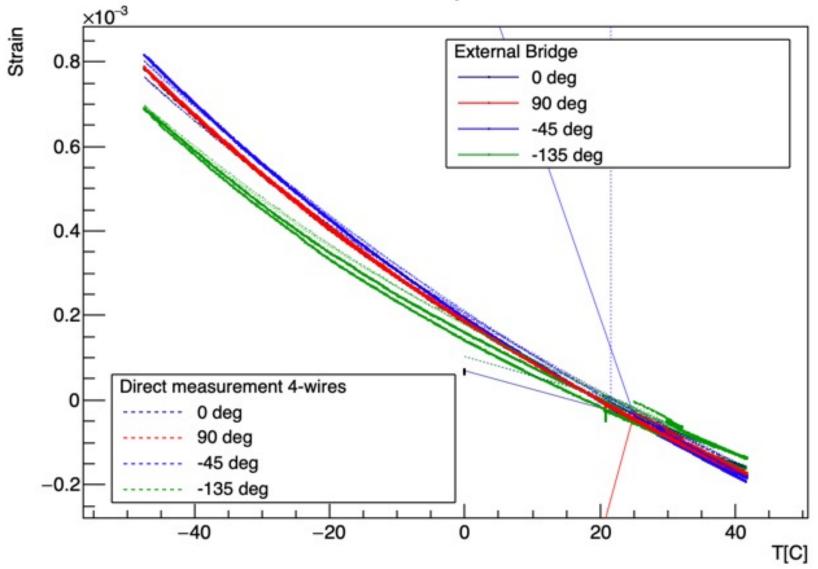

^{*} Indicates type of material used in determining thermal output

Experimental setup with Aluminium



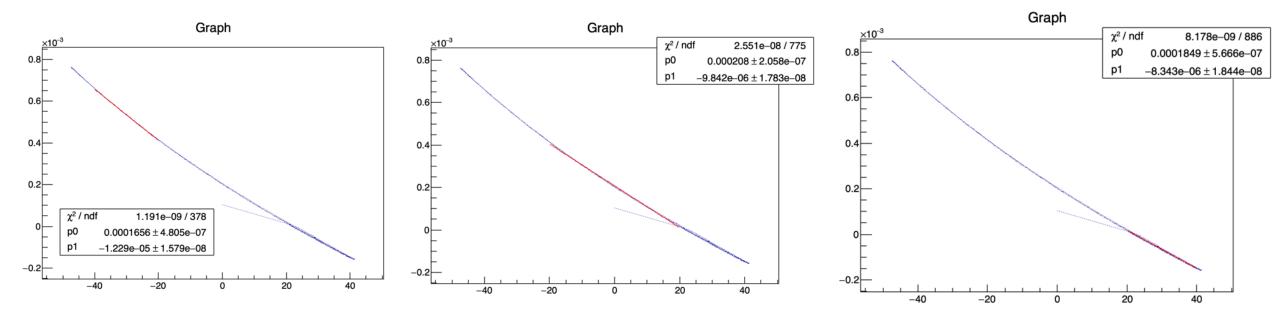
The setup is inside a climate chamber

Experimental setup with CF foil

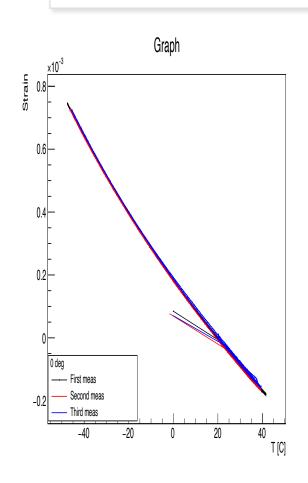

Properties for Carbon/Epoxy Composite Sheet

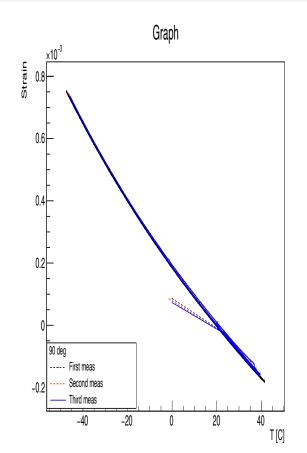
Property	Units	Value
Coefficient of thermal expansion - Longitudinal	x10 ⁻⁶ K ⁻¹	2.1
Coefficient of thermal expansion - Transverse	x10 ⁻⁶ K ⁻¹	2.1
Compressive Strength - Longitudinal	MPa	570
Compressive Strength – Transverse	MPa	570
Density	g cm ⁻³	1.6
Shear modulus - in-plane	GPa	5
Shear strength - in-plane	MPa	90
Ultimate Compressive Strain - Longitudinal	%	0.8
Ultimate Compressive Strain - Transverse	%	0.8
Ultimate Shear Strain - in-plane	%	1.8
Ultimate Tensile Strain - Longitudinal	%	0.85
Ultimate Tensile Strain - Transverse	%	0.85
Volume fraction of fibres	%	50
Young's Modulus - Longitudinal	GPa	70
Young's Modulus - Transverse	GPa	70

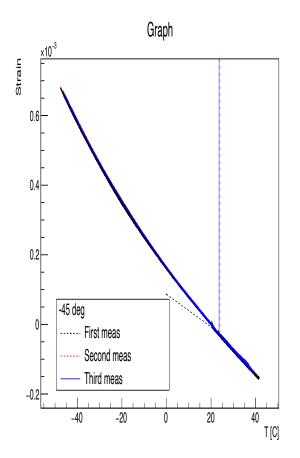
We perform a strain measurement in two ways:

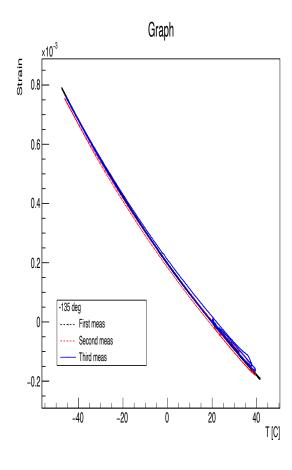

- External wheatstone bridge + Voltage measurement from Keysight DAQM901A module Data Acquisition System
- Direct 4 wire measurement of strain (resistance)
 from Keysight DAQM901A module Data Acquisition System

Graph

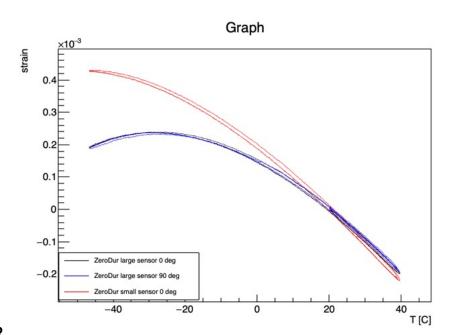

- of measurement, we have same trend of strain vs T
- for 0 and 90 degrees same trend of "strain vs T" and, therefore, same CTE, as expected from RS specs
- the trend of "strain vs T" of -45C and -135 C are a bit different. No specs available for these directions

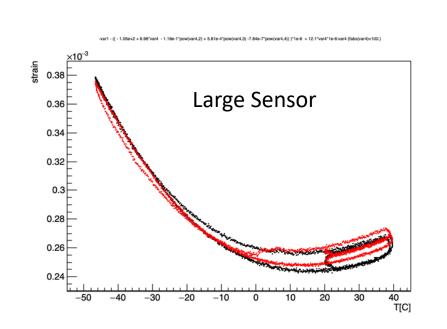

Fit and CTE extraction

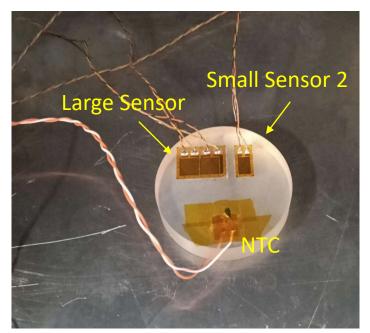


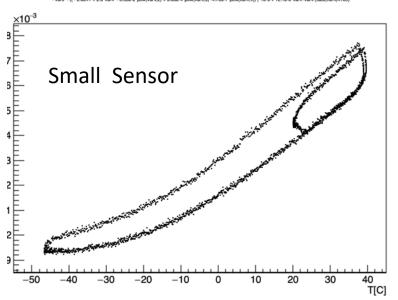

- The linear fit of in the [-20, + 20]C region for 0 deg gives CTE \sim (-9.8 + 12.1) ppm/C = 2.3 ppm/C, in decent agreement with RS specs of 2.1 ppm/C
- In the region [+20, +40]C the fitted CTE is $^{\sim}$ (-8.3 + 12.1)ppm/C =3.8 pp/C
- In the region [- 40, 20]C the fitted CTE is \sim (-12.2 + 12.1) ppm/C \sim -0.1 ppm/C
- 12.1 ppm/C is the CTE of steel 2018 used for thermal compensation

Reproducibility

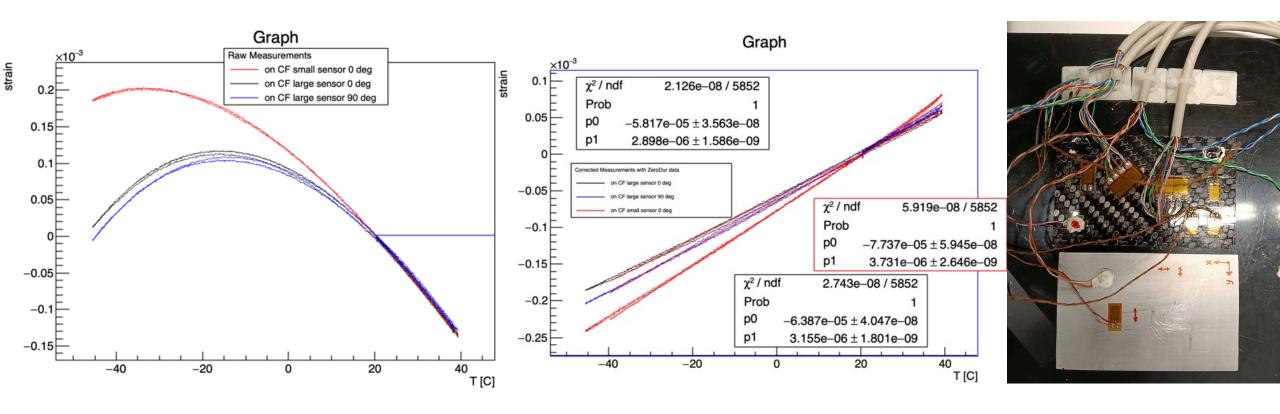


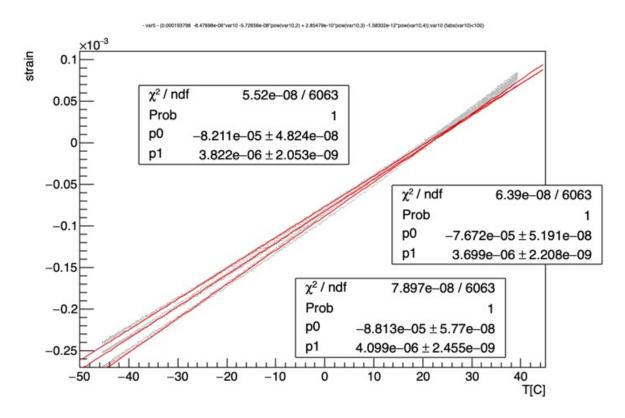


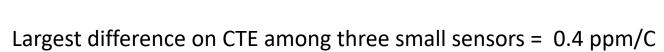


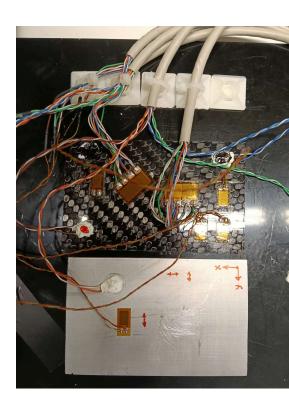

Zerodur material with CTE =0

- Apply themal correction from company relative to steel 1018
- Expected flat curve vs T
- Residual dependency on T
- Method not reliable
 - Probaby different gluing
- Change strategy:
 - Move to correction from data on ZeroDur

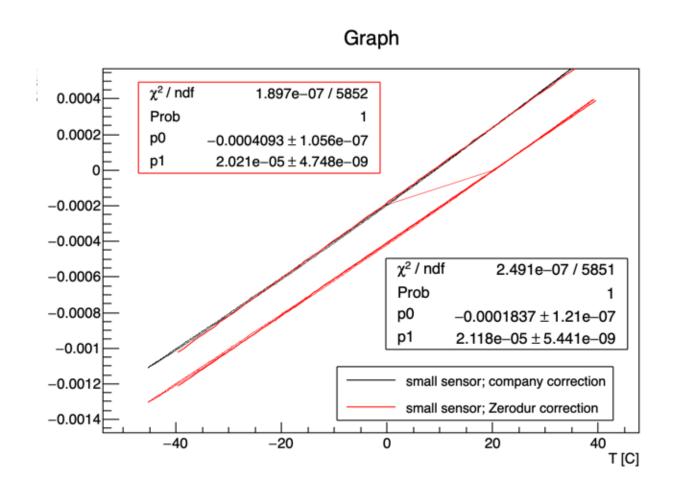


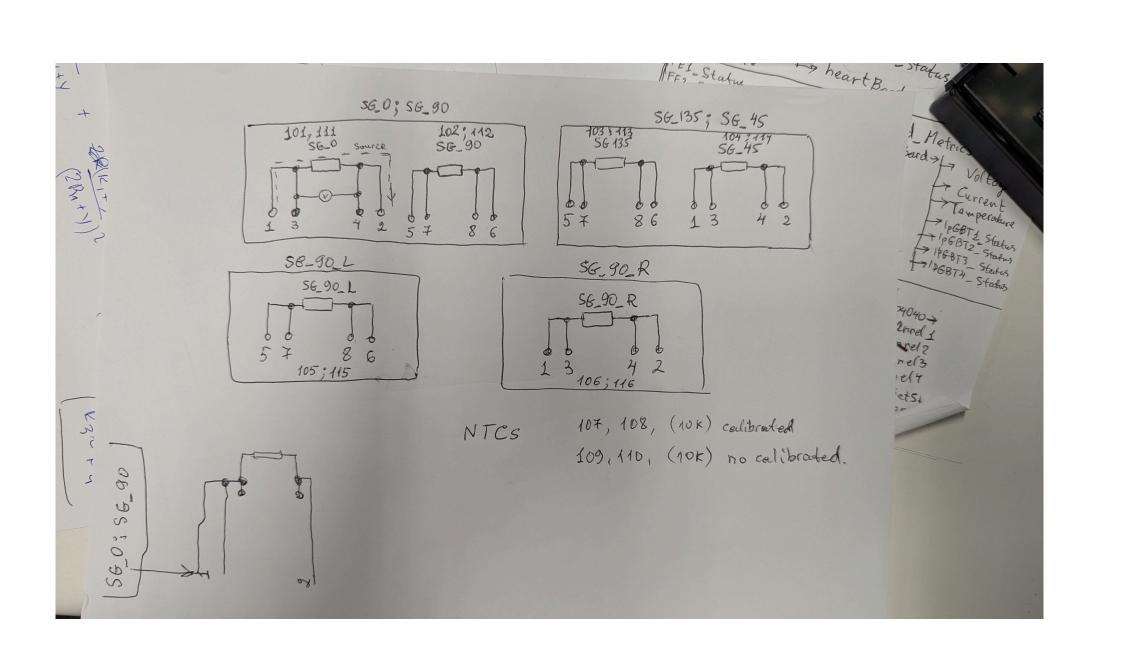



CF corrected with ZeroDur data



- On Large Sensor better lineary wrt using correction from company
- But larger discrepancy wrt RS (2.1 ppm/C)
- Still discrepancy between large and small sensors


CF corrected with ZeroDur data



Aluminium, corrected with ZeroDur data

Backup

