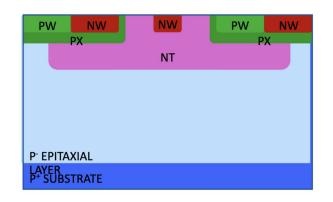




# ER2 characterisation and test system plans

Luca Aglietta and Valerio Sarritzu

In an ER2 wafer we should have:


- 5 Large MOSAIX
- ≈20 babyMOSAIX
- Small scale chiplets
  - Pixel test structures
  - Other test structures

In total there should be 4 **splits** with different doping profiles for faster charge collection and smaller input capacitance (-> smaller power consumption)

Primary Goals:

- 1. Validate MOSAIX design
- 2. Determine production yield
- 3. Select best performing split and FE variant







# **ER2** Chiplets



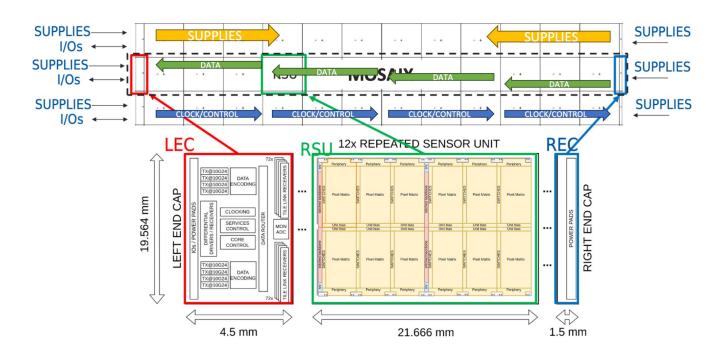
| 1 TTS1                                   |                      | Process monitoring and modeling                                                |
|------------------------------------------|----------------------|--------------------------------------------------------------------------------|
| 3 TTS2                                   |                      | Process monitoring and modeling                                                |
| 5 APTS - SF standard                     | 15 um pitch          | Sensor reference                                                               |
| 6 APTS - SF modified                     | 15 um pitch          | Sensor reference                                                               |
| 7 APTS - SF modified with gap            | 15 um pitch          | Sensor reference/optimization                                                  |
| 8 APTS - SF modified with gap            | 20 um pitch          | Exploration of larger pixel pitches/optimization                               |
| 9 APTS - SF modified with gap            | 30 um pitch          | Exploration of larger pixel pitches/optimization                               |
| 10 APTS - SF modified with gap           | 40 um pitch          | Exploration of larger pixel pitches/optimization                               |
| 11 APTS - SF modified with gap           | 50 um pitch          | Exploration of larger pixel pitches/optimization                               |
| 12 APTS - SF modified with gap and Nwell | 50 um pitch          | Study of impact of Nwell.                                                      |
| 13 APTS - SF modified with gap           | 20.8 x 22.8 um pitch | Sensor pitch in MOSAIX/optimization                                            |
| 14 APTS - OA modified with gap           | 10 um pitch          | Sensor reference/optimization                                                  |
| 14 Al 13 - OA mouned with gap            | 10 um piten          | Sensor reference/optimization                                                  |
| 15 DPTS modified with gap                | 15 um pitch          | Sensor + FE reference/optimization                                             |
| 16 DPTS modified with gap                | 15 um pitch          | Sensor + FE reference/optimization                                             |
| 17 DPTS modified with gap                | 15 um pitch          | Sensor + FE reference/optimization                                             |
|                                          |                      |                                                                                |
| 18 SEU 3                                 |                      | Custom cell libraries SEE/SEL characterization                                 |
| 19 RING-OSC-v1 ported                    |                      | Custom cell libraries leakage and delay                                        |
| 20 RING-OSC-v2                           |                      | Custom cell libraries leakage and delay                                        |
| 21 MOSAIX BIASING                        |                      | Standalone qualification of other versions of DAC and biasing blocks as backup |
| 22 MOSAIX SERIALIZER                     |                      | Full chain serializer test chip as in MOSAIX                                   |
|                                          |                      |                                                                                |
|                                          |                      |                                                                                |
| 23 TDC HEIDELBERG                        |                      | TDC                                                                            |
| 24 IPHC ASYNCH READOUT (SPARC)           |                      | architecture study                                                             |
| 25 SLAC NAPA-v2                          |                      | update on pulsed readout                                                       |
| 26 BNL ADC                               |                      | Special architecture for monitoring ADC                                        |
| 27 BNL Data transmission                 |                      | Test chip for transmission without repeater                                    |
| 28 Bandgap/Tmonitoring                   |                      | Test chip Bgap/Tmon as in MOSAIX                                               |
|                                          |                      |                                                                                |

Evolution of MLR1 test structures in view of **ALICE 3** upgrade

### APTS SF:

- Several size implemented (20-50µm)
- Study maximum pixel pitch
- Study radiation tolerance of different splits
- Variant with same pitch of MOSAIX: could give hint on split selection

## APTS OA:


• Charge collection time and time resolution of different splits

## DPTS:

• Sensor + FE reference

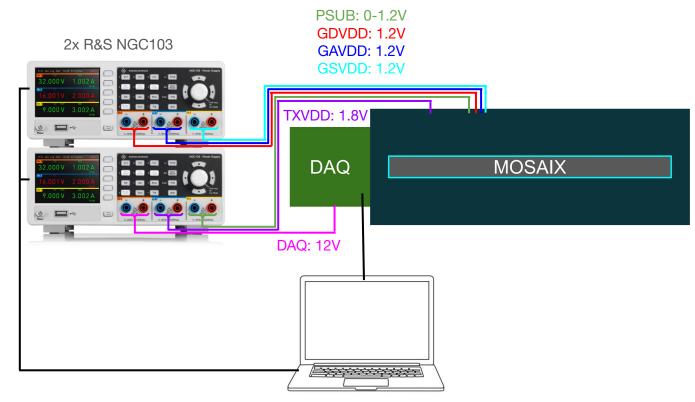
Same test system as MLR1, testing plan not yet prepared





Change of paradigm: MOSAIX = Full Module on silicon die ( $\approx$  ITS2 Stave) LEC (Control, Powering, Data encoding, serialization and transmission) + 12 RSU babyMOSAIX: mini module with 1 LEC + 1RSU.




| Onit bias   Unit bias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | D. i.i.      |          |              |          |              | 1                     |          |              |          |              | 0.0      |              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|----------|--------------|----------|--------------|-----------------------|----------|--------------|----------|--------------|----------|--------------|
| Order of the second | 2<br>S   | Periphery    | -        | Periphery    | +        | Periphery    | 2                     | -        | Periphery    | +-       | Periphery    |          | Periphery    |
| Unit bias Unit bias Unit bias Unit bias Unit bias Unit bias   Pixel Matrix Pixe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | Pixel Matrix | SWITCHES | Pixel Matrix | SWITCHES | Pixel Matrix |                       | SWITCHES | Pixel Matrix | SWITCHES | Pixel Matrix | SWITCHES | Pixel Matrix |
| Pixel Matrix SH Pixel Matrix SH Pixel Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Þ        |              | Ľ        |              | t t      |              |                       |          |              | Ħ        |              | Ë        |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SWITCHES | Pixel Matrix | SWITCHES | Pixel Matrix | SWITCHES | Pixel Matrix | srv stitched backbone | SWITCHES | Pixel Matrix | SWITCHES | Pixel Matrix | SWITCHES | Pixel Matrix |

|                                 |   | RSU TILE |   |   |   |   |   |   |   |    |    |    |
|---------------------------------|---|----------|---|---|---|---|---|---|---|----|----|----|
|                                 | 1 | 2        | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| MOSAIX FE baseline              | × |          |   | х |   |   | х |   |   | х  |    |    |
| Smaller input transistor (-40%) |   | х        |   |   | х |   |   | х |   |    | х  |    |
| Longer VCASB transistor (+150%) |   |          | х |   |   | x |   |   | х |    |    | x  |
| Antenna diodes on bias nets     |   |          |   | х | X | x |   |   |   | x  | x  | x  |
| Baseline biasing                | x | х        | х | Х | х | x |   |   |   |    |    |    |
| Temp. compensating biasing      |   |          |   |   |   |   | х | х | х | х  | х  | х  |

Each RSU is made of: 1

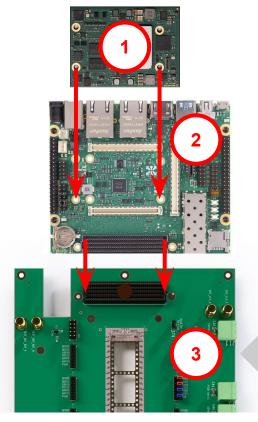
- 12 tiles each implementing a different FE variant
- 4 service nodes that control 3 tiles each (also physical switches to power individual tiles)





#### **DAQ Board:**

Enclustra ST1 base board + Enclustra AA1 FPGA


Biases provided directly by **Power Supply** (No proximity card):

- 6 channels needed
  - Preferred model R&S NGC 103 (other models with USB TMC protocol could be used after noise profile validation, e.g. HMP4040)

**PC** communication via USB 3.0

## Mosaix Test System





| Item |                      | Unit price (CERN via EDH) | Reference                          |
|------|----------------------|---------------------------|------------------------------------|
| 1a   | FPGA module          | 666,60 CHF                | Enclustra ME-AA1-270-3E4-D11E-NFX3 |
| 1b   | FPGA module rework   | 200,00 CHF                | Enclustra-provided BoM & placement |
| 1c   | Heat sink            | 29,70 CHF                 | Enclustra ACC-HS4-SET              |
| 2    | Base board           | 289,30 CHF                | Enclustra ME-ST1-W                 |
| 3    | (baby)MOSAIX carrier | -                         | Design: A. Junique / J. Morant     |
| 4    | Power supply (2x)    | 1241,00 EUR               | Rhode & Schwarz NGC103             |

#### Distribution and support coordinator: G. Usai @ CERN



# Mosaix testing plan:



### **Basic testing / Mass testing**

GOAL:

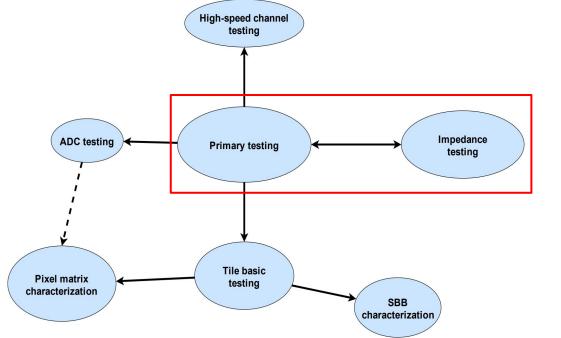
- Determine if module is working
- Production yield

Standardized testing routines to be executed in a predetermined sequence

To be done for all chips before further testing, and repeated on all chips available to acquire sufficient statistics

Large part will be performed with wafer prober

#### **Detailed characterization**


GOAL:

- Optimize working condition of modules
- Study performance

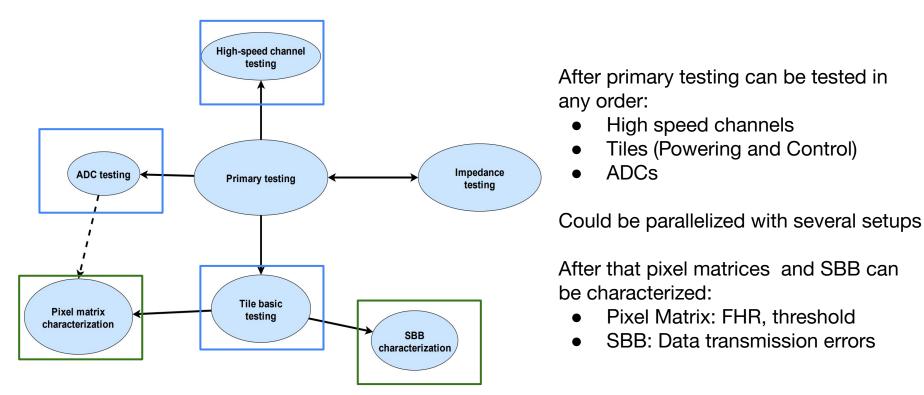
Only for a small subset of functional chips

Include lab measurements, testbeam measurements and study of single event effects

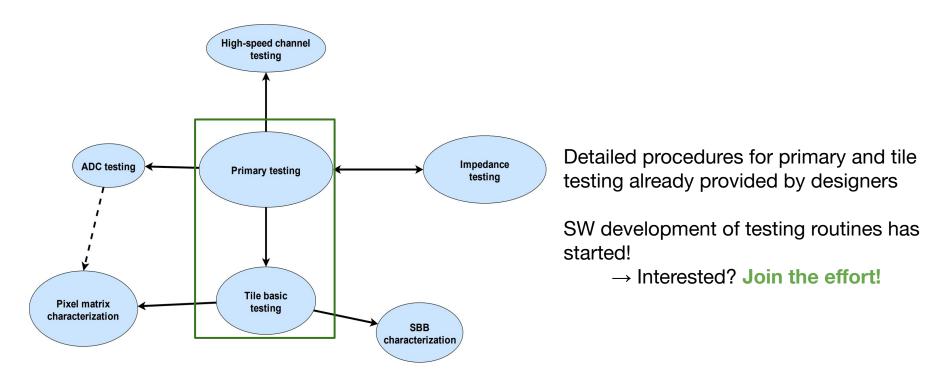




#### **Primary testing:**


- 1. Service powering
- 2. Service slow control
- 3. Global powering
- 4. LEC core slow control

### Impedance testing:


Measure impedance between different supply, ground and substrate nets

Required before any other test Different setup required for precise current monitoring









#### Lab measurements:

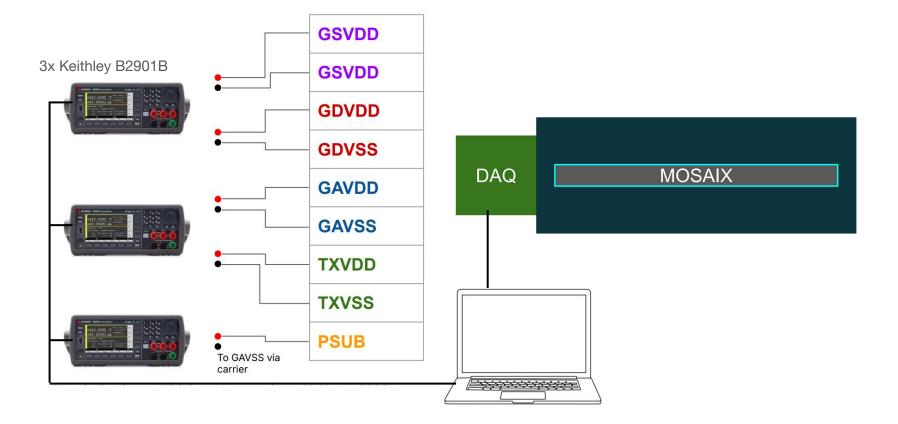
- 1. Simple operating point finding
- 2. Threshold spatial distribution and uniformity
- 3. FHR spatial distribution and uniformity
- 4. Noise injection via different supplies.
- 5. TID and proton irradiation

6. Verify FE temperature compensation Ecc ...

#### Testbeam measurements:

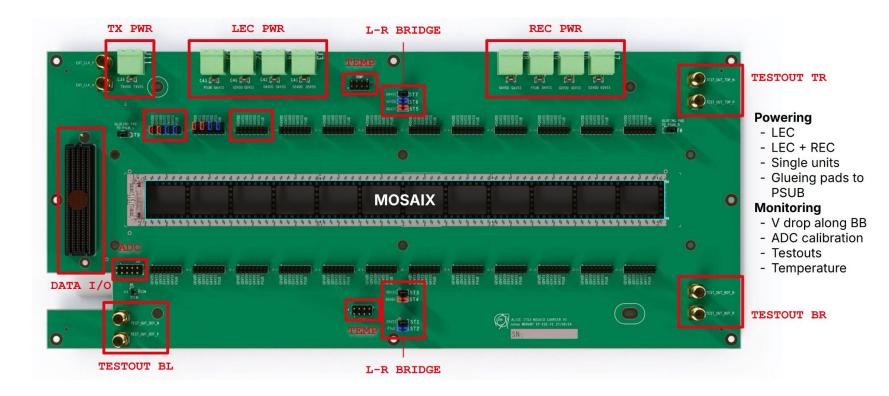
MIPs: Detection efficiency and spatial resolution Study for different: pixel flavors, splits, biasing parameters, supply voltages, temperature, readout modes/frequency

IRRADIATION levels: NIEL 1e13, TID 10 and 100kGy, protons at ITS3 requirements


#### Low energy protons/light-nuclei: Study Single Events Effects Single Event Upset and Single Event Latch-Up






| test           | <b>of June:</b><br>software<br>eady | Nove                             | <b>Mid</b><br>ember:<br>bonding                              | <b>Febr</b><br>Distrib<br>test str |  |  |  |
|----------------|-------------------------------------|----------------------------------|--------------------------------------------------------------|------------------------------------|--|--|--|
| SW Preparation | Debug / Training                    | Thinning Dicing                  | vicing Assembly Preliminary In-depth<br>testing characteriza |                                    |  |  |  |
|                | wafers                              | c <b>tober:</b><br>arrive<br>ERN |                                                              | luary:<br>ke tests                 |  |  |  |

# Backup



ALICE



