

Summary: ITS3 Activities in Torino

Bong-Hwi Lim

on behalf of INFN Torino ITS Team

Contents

bonding pads

Pixel matrix

Pixel matrix

APTS-OA

- MLR1 activity (APTS-OA)
 - Development of the DAQ system
 - Parameter optimisation with Lab measurement
 - Performance measurement with Test beam

babyMOSS

- ER1 activity (babyMOSS)
 - babyMOSS assembly
 - Plans and capabilities

MLR1 activity

Development of the DAQ system

- Main object of APTS-OA characterisation
 - Test the <u>intrinsic timing resolution</u> of 65 nm technology (TPSCo65)
 - Needs of measure the signal with fine time interval (~ps) directly from the analogue buffer output
 - Ultra-fast oscilloscope (~40GS/s) is utilised.

Analogue signal from the pixel

Lab Measurement - Parameter Optimisation

Param	Α	В	С	D
IBIASN [uA]	250	500	750	800
IBIASP [uA]	45	70	80	95
IBIAS4 [mA]	1	1.8	2.5	2.6
IBIAS3 [uA]	100	400	600	850
VCASP [mV]	140	270	300	400
VCASN [mV]	560	630	750	900

Target for the best timing performance

Example of parameter scan (Fall time)

Parameters scanned

- Parameter scan: Total 729 configurations tested
 VRESET scanned from 20 mV to 900 mV (20mV step)
 IRESET = 1 uA, VH = 1.2 V (fixed)
- Find the parameter combination that has HIGH Baseline, HIGH Amplitude, LOW Fall time

Lab Measurement - 55Fe measurement

Lab measurement setup

- Fall time vs amplitude distributions for different cluster size
 - Evident difference in charge collection between different process versions
 - Modified with gap process shows more events with high amplitude and low fall time

Lab Measurement - 55Fe measurement

version: modified with gap

APTS OPAMP

pitch: 10 um

split: 4 (opt.)

 $I_{bias3} = 200 \text{ uA}$ $I_{bias4} = 2.5 \text{ mA}$ $I_{reset} = 100 \text{ pA}$ $V_{reset} = 350 \text{ mV}$ $V_{casp} = 300 \text{ mV}$ $V_{casn} = 750 \text{ mV}$

 $I_{biasp} = 10 \,\mathrm{uA}$

Standard Modified with gap ALICE ITS3 preliminary ⁵⁵Fe measurements May 2022 Plotted on 22 Jun 2022 20 100 100 Cluster size 20 100 100 60 80 80 Amplitude (mV)

Lab measurement setup

- Fall time vs amplitude distributions for different cluster size
 - Evident difference in charge collection between different process versions
 - Modified with gap process shows more events with high amplitude and low fall time

Beam Test - Performance measurement

In-pixel timing resolution

Performed at SPS@CERN

Measurement of timing resolution

- Two type of measurements:
 - Time residuals between APTS-OAs
 - Time residuals between APTS-OA and Reference timing detector (LGAD)
- Analysed with both Corryvreckan and offline timing analysis and correction.

Average resolution: 63 ps

- Down to ~50 ps at the centre of the pixel
- with 99.5% efficiency

Test beam measurement setup (Telescope)

Beam Test - Performance measurement

In-pixel timing resolution

Test beam measurement setup (Telescope)

- Measurement of timing resolution
 - Performed at SPS@CERN
 - Two type of measurements:
 - Time residuals between APTS-OAs
 - Time residuals between APTS-OA and Reference timing detector (LGAD)
 - Analysed with both Corryvreckan and offline timing analysis and correction.
 - Average resolution: 63 ps
 - Down to ~50 ps at the centre of the pixel
 - with 99.5% efficiency

ER1 activity

babyMOSS assembly

Gluing of the babyMOSS to carrier card

Wire-bonding

- Torino performed some of the post-processing of the babyMOSS
 - Total 46 babyMOSS was sent, 33 chips assembled and returned to CERN
 - 1 babyMOSS fully tested
 - Still 10 babyMOSS chips waiting for the testing (WIP)
 - Bonded on the carrier card v1

ER1 activity

Plans and capabilities

- Plan for babyMOSS characterisation:
 - Temperature dependent performance measurement using chiller and thermal pad
 - ITS3 Target operating temperature: <u>15 to 30 °C</u>
 - More on discussion...
- Available Materials/Man power for ER2 in Torino:
 - Typical X-ray source 55Fe 37MBq for energy calibration

- Up to few 10 MeV electron beam LINAC underground
- **High brilliance x-ray source (HiBriX) with 3 elements anode**, thus multipeak characterisation, e.g. for ToT
- Ultra-fast oscilloscope (40GS, 25 ps interval) for analogue signal processing

- Probe station connected to a semiconductor parameter analyzer
- Fast pulsed laser setup (tens of ps pulses in visible range)
- Man power•
- 2 Postdoc researchers, 1 PhD, 2 BSc students