

BabyMOSS characterisation activities in Catania and Messina

Alessandro Sturniolo

Università di Messina and INFN Sezione di Catania

on behalf of the Messina-Catania team:

Paola La Rocca, Antonio Trifirò, Alessandro Sturniolo, Giuseppe Mandaglio

First measurements with babyMOSS

- Messina/Catania group has participated to a training for babyMOSS chip in-lab characterisation and to September 2024 test beam measurements @CERN-PS (parasitic mode)
- Performed analysis of data @7 GeV/c π⁺ beam from babyMOSS Sep 2024 test beam (presented at WP3 meeting on 14th Jan 2025)
- Catania's INFN-LNS laboratories received babyMOSS-5_2_W20E1 device mid Nov 2024, first functionality scans run mid Dec 2024

Present and future measurement plan

Setup:

- babyMOSS-5_2_W20E1
- DAQ-Raiser system
 - \rightarrow 2042 Raiser Board (v2)
 - → MLR1-045 DAQ Board (rev4)
- Climate chamber for temperature control

Goals:

- ⁵⁵Fe spectrum acquisition and pixel-topixel calibration
- FHR and threshold characterisation at different temperatures

Initial functionality checks

BabyMOSS - 5_2_W20E1			
Functional testing	Power On Scan	Ok	
	Register Scan	Ok	
	Shift Register Scan	Ok	
	DAC Scan	Ok	
Readout and pixel matrix testing	Digital Scan	Ok	
	Analogue Scan	Ok	
	FHR Scan	Ok	
	Threshold Scan	Ok	

- **Threshold scan:** bottom region 1 shows double threshold peak
- Confirmed chip functionality, as obtained @CERN in June 2024

ToT vs VpulseH calibration

Pulse length scan: overview

PSUB = 0.0 V

IBIAS	62
IBIASN	100
IDB	50
IRESET	10
VCASB	15
VCASN	64
VSHIFT	192

- Iterated Pulse Length Scans at varying VPULSEH, from 10 to 255 DAC
- Strobe signal length was 5 cc = 150 ns, pulse length was 5000 cc = 150 μ s (1 cc = 30 ns)
- Sending $n_{strobes}$ strobe signals with a **varying delay** between them, ranging from 0 to 3000 cc at a step = 10 cc
- Recording hits vs strobe delay (inverted sigmoid curve)
- Sigmoid μ is defined as ToT

Pulse length scan: an overview

VPULSEH = 70 DAC

Pulse length scan: an overview

VPULSEH = 70 DAC

ToT vs VPULSEH calibration

- Coloured area highlights minimum to maximum fit line
- ToT increases linearly with VPULSEH, with average slopes ranging 0.13 to 0.15 $\mu s/DAC$ and offsets from -1.2 to -3.0 μs

ToT vs VPULSEH calibration: data cuts

Pixels with line slope and offset outside $n\sigma$ from average excluded

ToT vs VPULSEH calibration: data cuts

Pixels with line slope and offset outside $n\sigma$ from average excluded

ToT vs VPulseH calibration parameters, bb region 1

• Bottom region 1 shows double line slope peak, pointing out that 2 separate groups of pixels have different calibrations (threshold scan issues already known from scans @CERN)

Preparing for measurements with source

- With calibration complete, we open the possibility to acquire and calibrate ⁵⁵Fe spectra
- Next steps: acquisition of spectra with source. Considering to apply Marius Menzel's stuck-RO method (https://indico.cern.ch/event/1479059/)
- Source holder designed in Catania, produced in Messina and ready for delivery!

FHR/Threshold characterisation vs temperature

PSUB = 0.0 V	
--------------	--

IBIAS	62
IBIASN	100
IDB	50
IRESET	10
VPULSEH	42
VCASN	64
VSHIFT	192

- BabyMOSS + Raiser set inside a climate chamber (@INFN Sezione di Catania)
- **Temperature was varied** from 16 to 34 °C with a step = 2 °C
- For each temperature, a sequence of FHR and Threshold Scans was performed at VCASB from 5 to 25 DAC with a step = 5 DAC, strobe signal length = $200 \text{ cc} = 6 \mu \text{s}$
- **FHR Scan:** reading hits on babyMOSS regions, normalised by #triggers and #pixels per region
- Threshold Scan: sending pulses with varying amplitude (VPULSEH = 0 to 70 DAC) and length = 400 cc = 12 μ s

FHR increases with increasing temperature

Bottom HU: FHR at VCASB = 25 DAC grows slower than expected or falls for T > 24 °C

Equipments and Facilities in Catania/Messina

Facilities:

- Clean Room
- Equipped laboratory (previously used to test Alpide structures)
- Singletron: light ions beam (H+, He+, He++) with 0.5-3.5 MeV

Instrumentations:

- Chiller (Temperature range -35 ÷ 200 °C, ± 0.01 °C stability)
- Picoammeter/Voltage sources (Keithley 2400 and 6487)
- Digital Oscilloscope (2.5 GHz and 40 GS/s)
- Radioactivity sources (⁹⁰Sr/⁹⁰Y 23 MBq, ⁵⁵Fe 9 MBq)
- Laser setup: Large Scanning TCT (660 nm and 1064 nm), beam spot ~10 μm , position resolution < 1 μm over 10 cm excursion
- Bonding tools: Hybrid Wedge Bonder (Kulicke and Soffa Asterion), Auto-Stepback Wedge Bonder (Kulicke and Soffa 4526)
- Climate chamber: volume 337 L, temperature range [-75°C; +180°C], temperature stability [±0,5°C ... ±1°C], speed: 8 °C/min from -70°C to +180°C and 5.5°C/min from +180°C to -70°C

Thank you!

Backup slides

BabyMOSS architecture & front-end

Front-end circuitry

IBIASN D

- M9

AVDD

IDB D-

M10

OUTD

M11

BabyMOSS chip architecture

- Digital read-out + pulsing circuit for testing
- Single RSU from MOSS (8 regions arranged in top & bottom half-unit)

VS M3

Bottom HU: FHR at VCASB = 25 DAC falls for T > 24 °C

Bottom HU: FHR at VCASB = 25 DAC falls for T > 24 °C

Bottom HU: FHR at VCASB = 25 DAC falls for T > 24 °C

