





# **ER1** Activities

#### babyMOSS characterization and Future Perspectives Bari

Angelo Colelli, Francesco Barile, Giuseppe Eugenio Bruno, Domenico Colella, Shyam Kumar, Rajendra Patra, Triloki Triloki et Al. *University of Bari and INFN sez. Bari* 

### Setup Configuration

- DAQ board ID: DAQ-0009012905D1273D, Raiser board ID: Raiser-2041, Chip ID: babyMOSS-2\_4\_W20E1
- Testing at V<sub>sub</sub> = 0 V (Zero-ohm shunt resistor in SUB)
- No Temperature control



#### Outline

- 1. Test-bench setup, functional and pixel matrix tests, along with a comparison of the results with tests conducted at CERN.
- 2. Detailed study of THR and FHR as a function of  $V_{casb}$  scans, cross-talk study of neighbouring regions.
- 3. <sup>55</sup>Fe spectra analysis using Time-over-Threshold (ToT) method.
- 4. Future Plan

### Summary of babyMOSS test scans

|                                      | Scans          | babyMOSS-2_4_W20E1 |  |  |
|--------------------------------------|----------------|--------------------|--|--|
|                                      | Power on       | ОК                 |  |  |
| Eurotional tosta                     | Register       | ОК                 |  |  |
| Functional lesis                     | Shift register | ОК                 |  |  |
|                                      | DAC            | ОК                 |  |  |
| Roadout and                          | Digital        | ОК                 |  |  |
| pixel matrix                         | Analogue       | ОК                 |  |  |
| tests                                | FHR            | ОК                 |  |  |
|                                      | Threshold      | ОК                 |  |  |
| <sup>55</sup> Fe<br>characterization | ToT            | Ongoing            |  |  |



### **Threshold Scan**



• Region 1 of the bottom half unit is found to be noisy, as also reported by CERN tests.

#### Threshold scan tb: comparison with CERN tests



• Threshold values are matching with CERN test results. Similar results for the bottom region are reported in backup.

# Threshold Scan at different V<sub>casb</sub> values



- To avoid cross-talk, one region is scanned while others remain inactive during a single scan.
- V<sub>casb</sub> = 15 (as default).
- The higher the V<sub>casb</sub> the lower the threshold
- TB region 3 has higher threshold
- BB region 3 has lower threshold

# FHR Scan at different V<sub>casb</sub> values



- To avoid cross-talk, one region is scanned while others remain inactive during a single scan.
- V<sub>casb</sub> = 15 (as default).
- The higher the V<sub>casb</sub> the higher the FHR
- Neighbouring region influence (cross-talk) presents in all regions.

# Threshold and FHR scans with VCASB

|            |          |          | MOSSL    | <u>Jser Manual</u> |
|------------|----------|----------|----------|--------------------|
| Thresholds | Region 0 | Region 1 | Region 2 | Region 3           |
| ТОР        | 104 e    | 108 e    | 130 e    | 106 e              |
| BOTTOM     | 104 e    | 104 e    | 104 e    | 85 e               |

— bb Region 0 45 bb Region 2 -- tb Region 3 ----- bb Region 3 40 25 20 20 25 35 10 15 30 VCASB  $10^{-4}$ bb Region 0 -面tb Region 1 bb Region 1 tb Region 2 bb Region 2 tb Region 3 bb Region 3 10-5 Fake Hit Rate -01 FHR requirement < 1e-06 10-7 10<sup>-8</sup> 20 30 35 10 15 25 VCASB

• At  $V_{casb} > 20$ :

| Thresholds | Observed                               | Expected                                |
|------------|----------------------------------------|-----------------------------------------|
| ТОР        | TH1 $\lesssim$ TH0 = TH3 << TH2        | TH0 <th3<th1<th2< td=""></th3<th1<th2<> |
| BOTTOM     | TH0 $\gtrsim$ TH2 >> TH3 (reg1 masked) | TH0=TH1=TH2>>TH3                        |

• At  $V_{casb} = 25$ :

| FHR    | Observed                           |  |  |  |  |
|--------|------------------------------------|--|--|--|--|
| ТОР    | FHR2 << FHR0, FHR1, FHR3           |  |  |  |  |
| BOTTOM | FHR3 >> FHR2 >> FHR0 (reg1 masked) |  |  |  |  |

### Setup for <sup>55</sup>Fe babyMOSS testing

- <sup>55</sup>Fe X-ray energy spectrum measurement using **Time-over-Threshold** (ToT) method.
- n\_events: 50M
- I<sub>reset</sub>: variable
- V<sub>casb</sub>: 10
- All other DAC parameters: DEFAULT
- V<sub>sub</sub>: 0 V



babyMOSS-2\_4\_W20E1 | TOT distribution | SourceTotAnalysis







DPTS paper

# <sup>55</sup>Fe ToT Scan at different I<sub>reset</sub> values



• As the I<sub>reset</sub> decreases, the main peak distribution shifts to high ToT values.

# ToT measurement of single pixels

- Is it possible to resolve  $Si_{esc}$ -peak or  $K_{\beta}$ -peak low  $I_{reset}$ ?
- Single pixel ToT measurement can be useful to avoid the gain calibration of the matrix Region, column, row
- Separating the clusters of charge sharing



#### For example:

- Neighbouring pixels: [TotHit(region=1, column=127, row=87, tot=23.93), TotHit(region=1, column=127, row=88, tot=11.96)]
- Single pixel: [TotHit(region=1, column=127, row=87, tot=35.91)]
- Away pixels: [TotHit(region=1, column=167, row=144, tot=27.93), TotHit(region=1, column=127, row=87, tot=35.91)]

#### <sup>55</sup>Fe ToT Source Stuck Readout Scan



- Method based on readout of the same pixel when the strobe is activated
- The resolution is higher than the Tot one
- Calibration and correction tecnique under investigation

### Summary

- BabyMOSS test set-up has been assembled in Bari and different scans have been performed at  $V_{sub} = 0 V$
- Threshold scan, FHR scan with varying V<sub>casb</sub> are performed
  - Operating range of  $V_{casb}$  can be found
- Characterization with <sup>55</sup>Fe source:
  - ToT peak value increases with higher I<sub>reset</sub>
- Talk at WP3:
  - <u>https://indico.cern.ch/event/1513821/contributions/6369949/attachments/3012365/5311585/babyMOSS\_testing\_Bari\_110225\_its3\_wp3.pdf</u>

#### **Future Plans**

- Perform babyMOSS testing and <sup>55</sup>Fe measurements at Vsub = -1.2V
- Avaiability to test the babyMOSAIX chip of ER2 in Bari.

• Possible activity in the development and characterization of babyMOSS chip bent in synergy with other INFN sites.



27/03/2025

### TOT measurement: Source Scan

#### **MOSS ToT measurement: Source Scan**



27/03/2025 ToT study, M. Menzel

# TOT measurement: Source Stuck Readout Scan

# **MOSS pixel read-out**

#### How can we make the RO get stuck intentionally?

- Assert long STROBE ~ 400 μs
- When OUTD activates, hit gets stored in latch
- TESTOUT configured such that it asserts if any pixel fired
- RO-command on TESTOUT, will read hit, reset latch
- As STROBE & OUTD still active, latch will store same hit again
- Priority-encoder will read out same pixel again
- Pixel will be read-out n times until OUTD deactivates\*



\* assuming STROBE still active

5

27/03/2025

https://indico.cern.ch/event/1479059/contributions/6229956/attachments/2983389/5254072/24\_12\_10\_ToT\_StuckRO.pdf

# Lab. set up of babyMOSS testing



27/03/2025

# babyMOSS prototype summary



- MOnolithic Stiched Sensor (MOSS) is made of ten repeated sensor units (RSUs).
  babyMOSS is equivalent to pixel matrix of the One RSU.
- Each RSU is composed of two half-units (HUs), labeled top and bottom.

 $_{27/03/2025}$  half-unit contains four **matrices**, also referred to as regions.

# babyMOSS pixel structure

• There are different front-end variants within a HU:

|        | Region 0 | Region 1                        | Region 2                                       | Region 3                                |    |
|--------|----------|---------------------------------|------------------------------------------------|-----------------------------------------|----|
| ТОР    | Standard | Larger input<br>transistor (M1) | Larger discriminator<br>input transistor (M11) | Larger common-source<br>transistor (M2) | DC |
| BOTTOM | Standard | Standard                        | Standard                                       | Slightly different layout               |    |

 For nominal settings with pwell/psub at 0V and Cin = 5 fF, simulated thresholds are:

| Thresholds | Region 0 | Region 1 | Region 2 | Region 3 |
|------------|----------|----------|----------|----------|
| ТОР        | 104 e    | 108 e    | 130 e    | 106 e    |
| BOTTOM     | 104 e    | 104 e    | 104 e    | 85 e     |

- In "standard layout" a parasitic capacitance added to improves the stability of the circuit. This capacitance, however, also reduces the frontend gain (red curve).
- In **"slightly different layout**" parasitic capacitance was slightly reduced, so front-end gain increases (yellow curve).





# DAC scans

- Each parameter is scanned with changing DAC values 0 - 255
- DAC Scan produces 20 plots of different combination of the dac parameters
- Few of the DAC scan results are shown

babyMOSS-2 4 W20E1 | VCASB all units and regions | DacAnalysis









Mean: 9.62

RMS: 1.495

15

Bandgap trimming settings | babyMOSS-2\_4\_W20E1

#### 22

# Digital scan: bb



babyMOSS-2 4 W20E1 | bb noisy pixels | DigitalAnalogScanAnalysis

Digital Scan test performed after masking the noisy region. •

# Digital scan: tb

![](_page_23_Figure_1.jpeg)

babyMOSS-2\_4\_W20E1 | tb inefficient pixels | DigitalAnalogScanAnalysis

Digital scan is found to be okay. Bottom region scan is in back-up. ۲

# Analogue scan: tb

![](_page_24_Figure_1.jpeg)

#### babyMOSS-2\_4\_W20E1 | tb inefficient pixels | DigitalAnalogScanAnalysis

ER1 Activities - Angelo Colelli -

# Analogue scan: bb

![](_page_25_Figure_1.jpeg)

#### babyMOSS-2 4 W20E1 | bb inefficient pixels | DigitalAnalogScanAnalysis

#### BB region 1 is noisy •

### Threshold scan: stability test

![](_page_26_Figure_1.jpeg)

- Thresholds of each regions are consistent across different measurements within 1 ADC.
- The measurements were taken using the default DAC settings, with no temperature control.

# Threshold scan with VCASB

#### Scans at lower VCASB

![](_page_27_Figure_3.jpeg)

ER1 Activities - Angelo Colelli -

# Threshold scan: Scatter plot of noisy pixels

VCASB = 15

VCASB = 25

![](_page_28_Figure_3.jpeg)

- Noise increases with the higher VCASB, as the THR decreases.
- Noise along the rows are possibly due to the metallic lines on chips.
- Difference in the FHR between the left and right part of the pixel matrix for the columns. Similar

observation is reported by <u>Styliani Paniskaki</u> in ITS WP3 meeting. 27/03/2025 ER1 Activities - Angelo Colelli -

### FakeHitRate scan with VCASB

Data of 13.02.25

![](_page_29_Figure_2.jpeg)

fhr scan vs VCASB tb

27/03/2025

ER1 Activities - Angelo Colelli -

### FHR Scan

#### Fake Hit Rate scan

| Regions | TB 0     | TB 1     | TB 2     | TB 3     | BB 0     | BB 1 | BB 2     | BB3      | Test at | Comment                             |
|---------|----------|----------|----------|----------|----------|------|----------|----------|---------|-------------------------------------|
| FHR     | 4.36E-08 | 0        | 1.53E-09 | 0        | 3.54E-08 |      | 1.46E-08 | 3.23E-08 | Bari    |                                     |
| FHR     | 6.58E-08 | 1.53E-10 | 1.07E-09 | 1.53E-10 |          |      |          |          | CERN    | bb: "No MOSS Packets in<br>events", |

#### STROBE\_LENGTH = 200 (default)

![](_page_30_Figure_4.jpeg)

# Threshold and FHR scans with VCASB

![](_page_31_Figure_1.jpeg)

• We can find the operating VCASB for each region provided that the FHR of ITS3 limit of <1E-6

#### ToT measurement of single pixels with IRESET = 8

![](_page_32_Figure_1.jpeg)

33

#### ToT measurement of single pixels with IRESET = 5

byMOSS-2 4 W20E1 | TOT distribution (1, 75, 194) | SourceTotAnaly: byMOSS-2 4 W20E1 | TOT distribution (1, 52, 169) | SourceTotAnaly:

![](_page_33_Figure_3.jpeg)

by MOSS-2 4 W20E1 | TOT distribution (1, 107, 194) | SourceTotAnaly

![](_page_33_Figure_5.jpeg)

![](_page_33_Figure_6.jpeg)

byMOSS-2\_4\_W20E1 | TOT distribution (2, 62, 194) | SourceTotAnaly:

![](_page_33_Figure_8.jpeg)