IMPERIAL

XLZD Collaboration meeting 2025 @ LNGS

Flex-cable readout for XLZD Skin Detector and beyond

Arindam Roy, Tim Sumner, Henrique Araújo

Imperial College London

Introduction

XLZD will instrument the TPC and the Skin with photosensors requiring large channel count.

Cabling/interconnect solutions must comply with extremely low radioactivity budget, minimal radon outgassing, and low signal loss.

Coaxial cables have very low attenuation (~0.5 dB/m @ 100 MHz) [1] potential for higher radioactive backgrounds and installation challenge within the Xenon detector

Copper–Kapton flex-cable transmission lines are a viable alternative:

Flex-cable design

Pulse shape modifications in transmission lines \rightarrow Loss – attenuates amplitude via conductor/dielectric dissipation **Dispersion** – broadens pulses via frequency-dependent speed (negligible for XLZD)

Differential topologies – tight line coupling for common-mode noise rejection and precise impedance control via trace width/spacing. Do we need differential readout? Can microstrip/stripline design work? Stripline mode – embedded between reference planes

Radioactivity & manufacturing

nEXO collaboration have developed an extremely low-background flex-cable with a US-based supplier \rightarrow path to achieve low radioactivity cables is clear

Radioactivity comparison of custom cables used in low background rare event experiments [2].

Cable	Copper layers [µm]	Polyimide layers [µm]	Coverlay	Surface finish	²³⁸ U [pg/g]	²³² Th [pg/g]	^{nat} K [ng/g]
nEXO SiPM	18 (x2)	50.8 (x1)	No	No	20 ± 2	<12.3	40 ± 12
nEXO SiPM [Com.]	18 (x2)	50.8 (x1)	No	No	1300-6200	16-63	
DAMIC-M CCD	18 (x2)	50.8 (x1)	x2	ENIG	31 ± 2	13 ± 3	550 ± 20
DAMIC-M CCD [Com.]	18 (x2)	50.8 (x1)	x2	FNIG	2600 ± 40	261 ± 12	170 ± 50

- high trace density
- potential for ultra-low radioactivity

Flex cables are more lossy —

- careful geometry optimization to minimize attenuation
- prototyping to test signal integrity over \sim 15–20m runs

Prototype testing at Imperial

Newbury prototype designed as microstrip, with Kapton coverlay:

- 50 µm substrate thickness 1.5m long; 1mm trace width (W) and spacing (S)
- evaluated component assembly challenges on thin flex, signal loss, and high-voltage performance

SiPM amplifier component assembly on 50µm flex

Prototype 21m test cable setup – 1.5 m segments joined

- confines fields in a homogeneous dielectric
- \sim 4× thicker substrate vs. microstrip mode to achieve similar attenuation – higher radioactivity and manufacturing challenge

Path forward \rightarrow microstrip design with adhesiveless-coverlay (asymmetric stripline) could be the optimal compromise.

Cabling challenges

cables to breakout

boxes at the top \rightarrow

via green conduits

challenging option

(6)

Requirements: \sim 15–20m cable lengths Low-loss photosensor signal transmission • requirements assuming LZ front-end performance Possibility I – routing ~15–20m

prototyping w/21.5m flex Ease of integration Ultra low-radioactivity

Recent XLZD integrated CAD model.

Tank dimensions - 12m dia; 12m tall.

Possible Skin flex-cable

2H

EXO-200 [3, 12] 18 (x1) 25.4 (x1) 412 ± 47 <117 $3700 \pm 2500 \quad 2100 \pm 840$ DAMIC at SNOLAB [4] 18 (x5) ENIG $4700 \pm 400 \quad 790 \pm 120 \quad 940 \pm 60$

QFlex are the frontrunners for flex cables due to low-radioactivity capability.

Fralock (US) and Amphenol (UK) are potential suppliers for long flex-cables.

Newbury (UK) have fabricated 1.5m long prototypes \rightarrow tests ongoing at Imperial.

Signal propagation and front-end electronics

PMT signals travel \sim 15–20m to FE electronics. FE modules perform amplification and shaping Shaping (LZ [3]): gaussian amplifier, 60 ns FWTM, ×40 area gain

Digitization: 100 MHz sampling rate Noise floor: $\sim 0.3 \text{mV} (1\sigma)$ at DAQ input

These specs define maximum tolerable cable attenuation to check if cold pre-amplification is needed.

together with surface-mount coaxial connectors

Signal amplitude vs. distance tested with an amplified SiPM signal $\rightarrow \sim x3$ voltage loss over $\sim 20m$ at our limited bandwidth (<100 MHz) – better than expected!

routing ~15–20m cables inside the detector, behind Skin PTFE 32

3x81+2x5 = 253 cm

optical simulations by Tim Marley

(2)

Possibility II –

← 81 cm

36 2" PMTs split across three rows along Skin height

routing option • 4-PMT flex-cables \rightarrow $9x \sim 2.5$ -m long cables + 9xlong cables to breakout boxes 2" PMT • All 9 cables with same design

• Group of 3 tapes emerge at the top; spanning 81 cm, at three **ICV** locations For details on Skin PMT geometry: see poster on

Simulation & optimization pipeline

- PMT signal generation: realistic time-domain pulses (shape, transit time & spread, gain, load, SPE resolution)
- **FFT**: convert to frequency domain
- Attenuation: apply frequency-dependent losses
- **IFFT**: attenuated waveform in time domain
- Shaping amplifier [3]: gaussian filter (60 ns FWTM, ×40 gain) to maximize S/N.
- Noise injection: add gaussian noise (0.3 mV; 1σ) to simulate the real LZ performance.
- ADC sampling: 100 MS/s after sample & hold
- Statistical analysis: histogram signal and noise over many trials to evaluate baseline and resolution

• POD threshold: 1.5mV to limit false SPE rate

Simulation results

Attenuation assessment: the 97% efficiency line marks the "effective threshold" where the detection efficiency falls below the target efficiency requirement.

Allowed loss budget: comparing this point to the nominal threshold yields \rightarrow ×2 voltage reduction for the R8520 (1") PMT and up to ×6 for R12699 (2") / R11410 (3") PMTs.

Fraction of individual spe signals above threshold for each of the PMTs, as a function of 'effective' threshold

Flex-cable requirement: these limits define the flex-cable attenuation budget over ~ 20 m w/o needing cold pre-amplification.

Conclusions & next steps

- ~20m flex-cable prototype tested with representative pulse signals, demonstrating low loss at our limited bandwidth (<100 MHz). Based on performance, flex cables look usable with R12699 (2") and R11410 (3") PMTs, without the requirement of cold pre-amplification. 1" PMT performance is borderline.
- Design an optimized prototype for the proposed Skin cable-routing configuration, including connectors and PMT bases for testing at low-temperature.
- These conclusions naturally apply to the TPC readout. A technical note will be available soon.

References

- 1. Waldron, W, PMT Cable Evaluation, 10/10/2016 LZ PPT presentation.
- 2. Arnquist et al (nEXO), Ultra-low radioactivity flexible printed cables, EPJ Techniques & Instrumentation 10, 17, 2023 [2303.10862]. 3. Aalbers, J. et al., The data acquisition system of the LZ dark matter detector: FADR, Nucl. Instrum. Meths. 1068 (2024) 169712.