R&D on transparent electrodes

XLZD Meeting - 30 June-2 July 2025, L'Aquila 2025

presented by Chiara Di Donato (UnivAQ and INFN, LNGS) for the PRIN 2022YYX3WJ group.

This work is based on the design and realization of **different transparent electrode prototypes** for **XLZD**. The work has been done in collaboration with the CREO (Centro di Ricerche Elettro-ottiche) Laboratories, in L'Aquila:

- Transparent Conductive Electrodes (TCEs): conductive layers (Indium-Tin-Oxide (ITO), Al₂O₃-doped Zinc-Oxide (AZO) and Graphene) deposited on a transparent UV grade fused silica UVFS or CaF₂ support (thickness 5 mm, diameter 1 inch);
- Metal (copper or silver) nano-wires over support;
- Metal reticles deposited via lithography over support.

The STARX cryogenic system consists of a cryostat and a noble gas re-circulation circuit:

- The cryostat is equipped with a condenser cooled by a Cryomech PT60 single-stage pulse tube cryocooler; and pre-cooled by a liquid nitrogen powered heat exchanger;
- The gas flow is promoted by a circulation pump, regulated by a Sierra SmartTrack 100 gas flow controller and purified through a SAES PS4-MT3 getter;

And inside the cryostat..

- 2 Parallel cylindrical Teflon Chambers are suspended in the external cryostat;
- A TCE is placed in the upper face of each chamber acting as anode, and a steel grid with hexagonal holes in the bottom face as cathode;
- The chambers end-caps are instrumented with a multianode Photomultiplier Tube (PMT) R12699-406-M4;

Several Comsol studies have been performed to evaluate the maximum electric field values and the field homogeneity inside the chamber.

3D View of the teflon chambers and

2D view of critical planes in which we have the highest electric field values: **xz** (left) and **xy** (right) **plane** view in correspondence of the bottom steel grids.

electric field inside them.

The chambers are **supplied with copper spacer rings**, placed in the upper and bottom chambers faces:

- The upper rings are grounded;
- -1kV is the exercise potential for the PMT;
- The bottom grids are taken to:
 - o 5kV
- 0 10kV

LXe is predicted to have a large bulk breakdown field of approximately 1 MV/cm. -> No breakdown voltage exceeded.

The resistance values were measured at cryogenic temperatures for the different assembled **TCE**s. They were arranged along a vertical structure, made of derlin clips electrically connected to a source meter.

- 7 TCEs have been tested in a dewar constantly filled with liquid nitrogen LN₂:
 - **#1,3** in CaF₂ with ITO deposit;
 - **#2** in **UVFS** with **ITO** deposit;
 - **#4** in **CaF**₂, virgin;
 - **#6,7** in **CaF**, with **AZO** deposit;
 - **#5** in **UVFS** with **AZO** deposit.
- Resistance values have been measured in 2 runs:
 - a **1st run** of **7 days**: only #3,5,6,7 worked;
 - a **2nd run** of **23 days**: only #2,3,5,7 worked;
- After 1st run #3,4,6 (CaF₂) cracked due to the presence of a temperature gradient (avoided in the 2nd run).
 Conductivity NOT compromised;
- 2nd run appears more stable with respect to the 1st possibly due to losing electric contacts in the 1st run;

- Systematic errors in the plot due to pressure variations (±40 mbar corresponding to ±2K in temperature). The instrument uncertainty is negligible (0.8Ω).
- **STARX facility** already **tested and thermodynamically characterized in Ar and** also **in Xe**;
- Stable behaviour of TCEs' conductivity at cryogenic temperatures observed, in particular for those with AZO deposit;
- UVFS is preferable for mechanical stability and also purity (fluorine may contribute to the background because of α-n high cross section);
- We are ready to characterize the TCEs in the STARX facility.

What will be possible to measure inside STARX?

- Evaluate TCEs performances under electric field in LXe cryogenic environment:
 - Test the mechanical stability in LXe;
 - Measure the light yield LY as a function of the potential applied between anode and cathode;
- Measure the transmittance at 178 nm by scintillating LXe with ^{83m}Kr source activation.

And the future?

- Currently, other layer materials (like Graphene) and technologies (like metal nano-wires or reticles over transparent substrate) are under investigation in the Creo Laboratories and will be characterize in STARX;
- The chambers diameter will be increased to test bigger electrode prototypes (2 inch, 4 inch already fabricated).