SIMULATIONS OF THE XLZD OUTER DETECTOR Dr Sally Shaw

INTRODUCTION & FRAMEWORK

- Standalone Geant4 package XLZD Sandbox has been developed to aid design work & early physics studies
 - ► Open to all to use <u>GitLab</u>
- Draws physics list from LZ's BACCARAT
 - [Simulations of Events for the LZ Dark Matter] Experiment]
 - ► G4EMLivermorePhysics
 - ► G4HadronPhysicsQGSP BIC HP Gd, includes the DICEBOX neutron capture gamma cascade modeling used in LZ
 - Bound-state scattering of thermal neutrons is turned on for hydrogenous materials
- ► Much of the work in these slides is by **Dr Sean Hughes** (Liverpool), Dr Alberto Uson (Edinburgh, Dr Sam Woodford (Edinburgh) and Dr Steve Jones (Sheffield, left for industry!)

× XLZD Sand	dbox ⊕		Ĺ ∽ 🛱 Star 2 😵 For
१ main ∨ xlzd-sandbox	< / [+ ~]	Find file Edit ~ Code ~	Project information
Sean Hughes authored 21	pCommand' into 'main' •••• I hours ago	⊗ 861f52af 🛱 History	Last run energy used 3522.5
Name	Last commit	Last update	ి 14 Branches
🗅 .ci	fix: eco-ci	1 month ago	⊘ 4 Tags
🗅 celeritas	style: clang-format remaining files. Upd	3 months ago	S 3 Releases
🗅 config	feat: adding Cerenkov and Scintillation	1 month ago	README

Commit statistics for main Oct 17 - Jun 10

Excluding merge commits. Limited to 2,000 commits

Authors: 13

Commits per day of mont

OPTICAL PHYSICS

- ► For GdLS, LZ's BACCARAT "G4ScintillationMod" code is used (adopted from Daya Bay and modified for LZ), including remission of photons
- ► WbLS: absorptions of Gd-LS and water using the Beer-Lambert law using the concentrations/densities of both Gd-LS and water (M. Yeh confirmed was a good approximation!)

► Gd-water: Geant4 Cherenkov

See poster "Preliminary Simulations of the XLZD Outer Detector" by Dr Sean Hughes

OD OPTIONS AND GEOMETRY

- ► Modified easily with an input JSON file
- ► Medium options:
 - ► **Gd-water**, no containment
 - ► 1-10% Gd-WbLS, option for with or without containment
 - ► GdLS, with containment
- Currently using UK cryostat CAD model has set initial OD size (if contained) to be about 1m thick on all sides
 - This should be optimised with a study
 - ► Also based on discussion with acrylic companies 1m gap to work on both sides of acrylic for feedthroughs, maybe not an issue with paneled designs

► For contained options, nominal stand-off between PMTs 80cm

🚯 detector.json [🖰 2.79 KiB

12

13

14

15

16

18

19

20 21

22

23

24

25

26 27

28

29

30

31

32

33

35

36

37

38

```
"outerDetector": {
    "Height": 12,
    "Radius": 6,
    "SteelShell": -
            "Status": true,
            "Thickness": 0.05
"GdPercent": 0.1,
"Medium_options" : -
         "0" : "No LAB"
        "1" : "WbLS with 1% concentration of LAB"
        "2" : "WbLS with 5% concentration of LAB"
        "3" : "WbLS with 10% concentration of LAB'
"WbLS_option": 1
"Medium":{
    "DopedLABGd": false
    "DopedWater": true
    "PMT": {
    "Type_options" : {
             "0" : "8 inch"
            "1" : "10 inch"
            "2" : "20 inch'
    "Type": 0,
             "Status": true,
            "Total": 20,
             "Ladders": 6,
            "Radius": 6,
             "WallThickness": 0.001
     "RoofPMTStatus": true
    "SpaceBetween": 1.3,
             "Height": 0.2,
            "Width": 0.2,
             "Length": 0.25
    "Status": true
    "Radius": 4,
    "PMT": {
```


See poster "Preliminary Simulations of the XLZD Outer Detector" by Dr Sean Hughes

	- A. 17			
		(
а)		-		
		-		
7	٠.		٠	2
	ð-	•		
	-		•	ē-
	٩.	٠		

	×-			
		•	٠	2.
÷	1			
	•	•		
1	۲,	5	•	ē-
	۵,			
•		•		7 -
÷,	2	•	۰,	
				- ()
•			_	
		•		٠ <u>۳</u>
	-			
۰.	×.	۱.		
				-*
•	-			
		•		-
-	4			-
-	-			
	÷	•	-	-
T	•	Ļ.		

OD OPTIONS AND GEOMETRY

No Inner Containment

12 m

PMTs and reflector

Muon veto volume

12 m*

Optically separated nVeto volume

Medium fills entire tank Gd-water, Gd-WbLS, (GdLS?)

Dr Sally Shaw <u>sally.shaw@ed.ac.uk</u> XLZD Collaboration Meeting

STUDIES OF BACKGROUND RATE

- ► So far, considered a few key backgrounds and considered a 600µs window, max rate for 5% dead time is \sim 86 Hz:
 - ► Cavern gammas
 - Scaled from paper [https://arxiv.org/abs/2504.11613] expect 6 Hz if tank can be taller for **Boulby** polyhalite flux (similar for all labs, see backup slides)
 - > If tank is 12m and OD is \sim 7m tall 200 Hz!
 - Important initial conclusion: water tank needs to be taller
 - ► Internal medium contaminants
 - Scaled up from LZ OD: pessimistic (GdLS is highest BG, no reduction) in LZ radiopurity): 68 Hz above 200 keV
 - ► Cryostat
 - Assume LZ Ti radioactivities [<u>https://arxiv.org/abs/1702.02646</u>]
 - ► I estimated ~25 Hz from cryostat at 0 keV threshold Sean's simulation says 30 Hz, dropping to 3 Hz at 100 keV, 2 Hz at 200 keV
 - ► OD PMTs see next slide

12000 6000 3576 - 500 1000 _ 12000 6320 2751,5

OD PMT SIMULATIONS

- Placing PMTs directly in scintillator medium produces a significant rate
- Plots use LZ PMT radioassay + data from Hamamatsu on a new, low R glass
- Placing PMTs directly in even 1%
 WbLS is very challenging need to raise threshold to ~ 2 MeV minimum
 - Potential to mitigate with position reconstruction, but this doesn't avoid trigger rate/occupancy
- With 80cm water gap, rates are reduced significantly to a few Hz at low threshold across 340 PMTs

	Hamamat	SU			10^{3}	<u> </u>				
	U (Bq/PMT)	Th (Bq/PMT)	K (Bq/PMT)		10	10.		·		
т	1.3	1.6	2.3	_	10 ¹	5/1				
Rad	1.54	1.04	1.62	bin	1			- no -		
Rad	4.1	5	7.3	Hz/	10	Γ		Mr.)	
Glass	3.4	4.4	6.6	ate [10^{-3}				h. 1	1
lass	0.84	0.44	0.91	R	10		Water			
-R Glass	0.03	0.02	0.99		10^{-5}		WbLS 1% WbLS 10%		뼷╎║	l
R16367	2.56	1.61	15.87		(100	200		3(
					,	0	# hit	PMTs		50
	- PMT body PMT body	+ LZ glass + new glass	5.0 [240 PMTs] [2.0 [240 PMTs] [2.0 [240 PMTs] [2.0 [240 PMTs] [24	15.0 12.5 10.0 7.5	G	dLS		PMT bod PMT bod	y + LZ g y + new	glas gla

NEUTRON THERMALISATION

- Broad agreement we want no material between the cryostat and the OD medium
- ► Aim to avoid issue in LZ with long capture times due to hydrogenous materials close to cryostat - foam, water, acrylic
- ► The efficiency simulations later in this talk used a 600µs window - overkill, needs optimising

LZ geometry XLZD geometry 6lb PE foam, OCV Styrodur foam, wrapped around curved assembly to top conduits raise top tanks, ~4.6" thick OD side tank top foam, 6lb PE foam, 1" thick OCV Styrodur foam, **Barrel staves** OCV Styrodur foam Tailored around HV conduit

OD bottom tank foam,

6lb PE foam

OD side tank bottom foam, 6lb PE foam, 0.25" thick

NEUTRON SIMULATIONS

Key background sources simulated

z [m]

10

Neutrons/bin

10

0

- ► Cryostat
- ► PMTs
- ► PTFE
- ► Resistors
- SOURCES4a (,n) neutron spectra from LZ
- Neutron energy deposits are clustered using:
 - ► R = 30 mm
 - ≻ z = 2 mm
 - ≻ t = 100 ns

- ► From <u>requirements task force</u>:
 - \blacktriangleright Neutron NR rate <10% of CEvNS

► 0.0046 - 0.0064 counts t-y

> We have aimed for < 1 count in 10 years

- Simulations of the key NR backgrounds indicate a rate of ~1.1 NR/year, resulting in a required veto efficiency of >91%
 - ► We have conservatively raised this to >95%
 - Accounts for 4% systematic observed in LZ across all calibration sources (higher in sim than data)

WIMP cross-section 5 sensitivity at 2800 GeV/c ²	cm²	< 2x10 ⁻⁴⁷	Observation of Majorana triplet model and higher mass EW multiplet model
WIMP cross-section 90% exclusion at 60 GeV/c ²	cm ²	< 2x10 ⁻⁴⁹	Exclusion of majority of Higgs portal models
Fiducial exposure	t-y	> 500 - 650	Range corresponds to LNGS – Boulby/SNL/SURF
Analysis threshold	ре	<= 4	i.e. no worse than a 4-fold coincidence requirement. FIXED
Neutron NR background	cnts/t-y	< 0.0046- 0.0064	Aim for rate <10% of CEvNS NR. Range corresponds to LNGS – Boulby/SI
Pb-214 activity	μBq/kg	< 0.1	Aim for rate < solar ER (and < CEvNS NR after discrimination)
Kr-85 concentration	ppt	< 0.1	Aim for rate < solar ER (and < CEvNS NR after discrimination)
Active mass	tonne	> 60	FIXED
ER leakage @50% NR acc	%	< 0.5	
Single electron efficiency	%	XXX	TBD. Derived in FlameNEST.
LCE	%	> 50	Averaged absolute LCE
Drift field	V/cm	> 80	
TPC PMT QE	%	> 31	FIXED
Gas field	kV/cm	> 6.75	
Electron lifetime	ms	> 10	FIXED

Preliminary Draft -- for Discussion

LZ AmLi data

Dr Sally Shaw <u>sally.shaw@ed.ac.uk</u> XLZD Collaboration Meeting

Dr Sally Shaw <u>sally.shaw@ed.ac.uk</u> XLZD Collaboration Meeting

- ► Full optical simulations
- Preliminary results, caveats:
 - ► These are expected to be optimistic for WbLS (LY with no Gd-loading used, may drop to 50%)
 - ► 120 PMTs used PMT array optimization studies are still immature
- Low threshold is readily be achieved with GdLS

CONCLUSIONS

- ➤ There has been a huge effort in the UK to establish a Geant4 simulation framework to be used for Outer Detector design and performance studies
 - ➤ XLZD-Sandbox recently expanded for whole UK project, now with a team of ~ 15 PIs, postdocs & students contributing
 - Very happy for others to use please let me know!
 - Will work closely with simulations task force going forward potential to have this package as part of official XLZD framework
- > Preliminary simulations of the OD suggest that the neutron veto efficiency requirement is most readily achieved with GdLS
- ► Key further work needed:
 - Expand neutron background modeling to more components
 - Investigate mitigation of high rate caused by PMTs submerged in medium
 - ► **Optimisation** of OD size and PMT arrangement
 - Expand studies of OD backgrounds
 - ► Validate WbLS optics/LY when more data available for Gd-loaded

▶ ...

BACKUP SLIDES

NEUTRON CAPTURES AND GAMMA RANGE

- ► 1m gap on all sides for Neutrons^E acrylic vessel contains all nCaptures as expected
- ► Aim to avoid neutrons in hydrogenous materials which slows down neutron capture

Gammas

PRELIMINARY CAVERN RATE

.

- Paper [<u>https://arxiv.org/abs/2504.11613</u>] OD (and smaller cryostat)
- Use flux at 3rd surface as closer to OD dime accordingly using attenuation lengths for key

Dr Sally Shaw <u>sally.shaw@ed.ac.uk</u> XLZD Collaboration Meeting

· · · · · · · · · · · · · · · · · · ·	Volume	Height [m]	Diameter [m]	Distance fro
considered a smaller				Top & sides
	1st surface	11.14	12.10	-0.10
	WT	10.94	11.90	0
	2nd surface	8.94	9.90	1.00
	3rd surface	7.54	7.90	2.00
encions and scale	4th surface	6.74	6.40	2.75
LIISIUIIS and Scale	5th surface	5.96	4.92	3.49
	GdLS	5.94	4.90	3.50
ey gammas ray energies	6th surface	4.96	3.92	3.99
	OCV	4.94	3.90	4.00

LABORATORY CAVERN BACKGROUNDS

Laboratory	K (Bq/kg)	U (Bq/kg)	Th (Bq/kg)	Dominant Source	Total Rate (Hz)
Boulby, UK* - POLYHALITE	2500 ± 126	0.354 ± 0.042	$(1.14 \pm 0.37) imes 10^{-2}$	polyhalite	5.57
Boulby, UK* - Current lab	112 ± 2	1.63 ± 0.06	1.88 ± 0.06	mudstone & halite	0.70
Gran Sasso, Italy*	70 ± 2	9.5 ± 0.3	3.7 ± 0.2	concrete	1.27
Snolab, Canada	240 ± 10	15 ± 2	9.7 ± 0.2	shotcrete	3.09
SURF, USA	220 ± 60	29 ± 15	13 ± 3	shotcrete	4.24

► THIS ASSUMES A 13.5 m TALL WATER TANK AND A STEEL PLATE BENEATH!

.

PRELIMINARY CAVERN RATE

- ► With 1.8m water shielding at top rate is vastly dominated by K40 from the top (194 out of 198 Hz!
- > By increasing water shielding on top to be 2.5m, total rate is ~ 6 Hz

- Total - U-238 - Th-232 - K-40

Dr Sally Shaw <u>sally.shaw@ed.ac.uk</u> XLZD Collaboration Meeting

0.015

Rate of Gammas Entering OD (Hz) Polyhalite Activity (Bq/kg) Isotope Total with extra **Total** shielding at top U-238 0.356 0.193 Th-232 0.0114 0.026

0.002 K-40 196 5.55 2500

 Total - U-238 - Th-232 - K-40

CRYOSTAT BACKGROUND

- Cryostat submerged in medium could produce significant rate
- ► Use LZ Ti radioassay results to estimate cryostat rate
 - Calculate maximum possible rate by calculating decays/s, multiplying by number of gammas/ betas in the chains and accounting for $\sim 50\%$ going outwards: ~30 Hz
- Simulation result agrees: 30 Hz at low threshold, dropping to 3 Hz at 100 keV, 2 Hz at 200 keV
- This does not taking into account many components! Welds, support structures, etc

	T	Mass	238 U	232 Th	⁶⁰ Co	40 K	
Experiment	Type	(kg)	(mBq/kg)	(mBq/kg)	(mBq/kg)	(mBq/kg)	(
DarkSide50 [29]	SS	175	<1	<1	13.1 ± 1	-	
XENON100 [27]	SS	74	<1.8	< 0.03	5.4 ± 0.5	< 9	
XENON1T [30]	SS	870	2.4 ± 0.7	0.21 ± 0.06	< 0.36	9.7 ± 0.8	
ZEPLIN-III [31]	Cu	400	$<\!6.22$	$<\!2.03$	-	< 0.32	
EXO-200 [32]	Cu	5,901	< 0.01	< 0.003	-	<0.01	
GERDA [33]	Cu	16,000	0.017 ± 0.005	0.014 ± 0.005	0.018 ± 0.005	< 0.049	
	SS	25,000	< 1.2	< 1.2	19	< 2.9	
MJD [34]	Cu	1,297	< 0.0003	< 0.0003	-	-	
LUX [11]	Ti	230	< 0.25	< 0.2	-	< 1.2	
LZ (this work)	Ti	1,827	${f U}_{e} < 1.6 \ {f U}_{l} < 0.09$	Th _e : 0.28 ± 0.03 Th _l : 0.23 ± 0.02	< 0.02	<0.54	

