# A path to understanding accidental coincidence backgrounds in XLZD

Ann Miao Wang, Tina Pollmann, for the detector working groups

XLZD Collaboration Meeting @ LNGS 2025

### In LXe (and LAr) TPCs, many signals besides the standard S1 or S2 are observed.



## There are many possible sources of lone (a.k.a. isolated) signals

### **Incomplete events**

#### Lone-S2

- No S1 photon creates a signal in a PMT (low g1, or shadowing from electrodes)
- Event too close to anode or glue lic ring, S1 swallowed by S2

#### Lone-S1

- All electrons lost
  - Absorbed on impurities
  - Event in charge-insensitive volume (CIV)
- Light leak from outside TPC



# Spurious signals

#### Lone-S2

- · Grids electrodes/micro-discharging
- Radioactivity on wires
- (Fluorescence-stimulated) release of captured/trapped drift electrons,
- Photoionization
- Delayed extraction at liquid/gas interface
- Scintillation in GXe

### Lone-S1

- PMT dark counts and afterpulsing
- Mis-classification of single electrons as S1
- Few-photon events (Cherenkov, fluorescence, small energy deposits in Xe)
- Electroluminescence due to misaligned grids

—> A lone-S1 and lone-S2 signal occurring within the maximum drift time create an AC background event

Accidental coincidence backgrounds strongly impact sensitivity to CEvNS and to WIMPs below ~100 GeV No ER-NR discrimination --> a few counts matter None of the XLZD sensitivity predictions include AC templates Signal and background distributions in LZ Signal and background distributions in XENONnT <sup>8</sup>B CE $\nu$ NS WIMP ER Wall AC 4.25  $10^{4}$ **XENO** 4.00  $\log_{10}(S2c [phd])$ 3.75 5S2 [PE] 3.50 40 GeV WIMP  $10^{3}$ All Data 3.25 3.00 Accidental mode 0.8 keV<sub>ee</sub> 5 keV<sub>nr</sub> 2.8 keV<sub>ee</sub>  $5.0 \text{ keV}_{ee}$ 7.2 keV<sub>ee</sub> 2.75⊢ 15 keV<sub>m</sub> 25 keV<sub>nr</sub> 35 keV<sub>nr</sub> 10<sup>2</sup> 10 30 40 50 20 60 70 80 0 20 60 80 40 100 0 S1c [phd] cS1 [PE]

# Keeping AC background levels low requires stricter cuts as detectors get bigger.

| Detector                                                                  | LUX                  | PandaX-II | XENON1T<br>SR1 | PandaX-4t<br>commissioni<br>ng | XENONnT<br>SR0      | LZ SR1           |
|---------------------------------------------------------------------------|----------------------|-----------|----------------|--------------------------------|---------------------|------------------|
| Fiducial volume [t]                                                       | 0.118                | 0.329     | 1.3            | 3.7                            | 4.2                 | 5.5              |
| S1 n-fold requirement                                                     | 2                    | 3         | 3              | 2                              | 3                   | 3                |
| isolated S1 [Hz]                                                          | 1                    | 1.5       | 1              | 9.5                            | 1.48                | 2                |
| isolated S2 [Hz]                                                          | 0.0005               | 0.012     | 0.0026         | 0.0045                         | 0.104               | 0.02             |
| AC rate w/o cuts<br>based on isolated S's<br>[1/yr] RAC = RisoS1 * RisoS2 | * T <sub>drift</sub> | 176.0     | 57.4           | 1105.5<br>1%                   | 10678.8<br>.3% 0.15 | 1199.6<br>% 0.6% |
| Livetime loss from AC                                                     | 0.8%                 | 1%-2%     | 4%             | 7.3%                           | ~7%                 | 25%              |
| After all cuts in WIMP<br>ROI: #AC/year                                   | 0.04                 | 10.04     | 0.61           | 3.40                           | 16.52               | 7.30             |

R<sub>AC</sub> = R<sub>isoS1</sub> \* R<sub>isoS2</sub> \* T<sub>drift</sub> \* (fraction in ROI) \* (cut efficiency)

We do not know yet how the different sources contribute to the lone-S1 and lone-S2 spectra. This makes it difficult to create AC background PDFs for XLZD.



6

### Analysis and R&D so far has raised as many questions as it answered.

Lone S2s: a few sources have individually been well characterized, e.g. **Hotspots / grid emission:** ongoing analysis from current experiments and test stand R&D to mitigate electron emission, known risk for grid production

> Do we understand all the sources of electron bursts? What, if anything, should we do to prevent this?



Example of XENONnT hotspots

Example of LZ grid hotspots

(\*) we cannot do justice to the full AC story so far in this short talk, so this just gives a flavour, not a comprehensive overview

### Analysis and R&D so far has raised as many questions as it answered.

e.g.: lone S1 and lone S2 rates are not stable in time



lone S1 and S2 rates in XENONnT

What influences them?

What is/are the 'mystery impurity/ies'?

Photoionization (of what?)?

Fluorescence/photoluminescence (of what?)?

### Analysis and R&D so far has raised as many questions as it answered.

e.g. *Phenomenology of* **delayed electrons and photons:** detailed characterization of phenomena done in several experiments



# Solder fluxes used in LZ and XENONnT PL under both UV and VUV excitation - first direct evidence of something in our TPCs photoluminescing

See poster by P. Kharbanda, A. Hurhina

Stannol KS115 flux residue (used in XENONnT) photoluminescing under UV light ...





### Solder fluxes used in LZ and XENONnT PL under both UV and VUV excitation first direct evidence of something in our TPCs photoluminescing



Emission Wavelength (nm)

... and under VUV light

170

160

150

180

190

### Lone S1 rate is enhanced by quartz window in front of photon detector.

P. Sorensen, R. Gibbons, http://arxiv.org/abs/2505.08067

https://wiki.physik.uzh.ch/xlzd/doku.php?id=general:meetings:wg34\_20250410



### What models do we currently have?

- 1. Table listing currently known accidental sources in LZ and how they likely scale (see backup)
- Somewhat naive 'accidentals scaler' code infrastructure that generates or accepts as input lone-S1 and lone-S2 spectra by source, scales them as desired, and generates a backgrounds PDF compatible with our inference tools



See poster by F. Pompa for sensitivity study using AC PDFs from this model

## Next steps for understanding the accidental backgrounds picture

# Desire an apples-to-apples comparison of accidental sources in current LXe detectors, with the following information:

- 1. Common criteria for defining isolated S1 and S2 selection
- 2. Complete table listing known accidental sources and how they scale (see backup for draft)
- 3. Lone S1 and S2 pulse area spectra, broken down into various sources, with and without various cuts
- 4. Time dependence of lone S1 and S2 sources over the experiment lifetime, and all the detector conditions likely related
- 5. Comparison of detector conditions associated to the accidental rate spectra, and resulting numbers (see backup for draft)

—> We propose creation of a new task force composed of active XENONnT and LZ members working in the respective analyses.

Goal is to generate enough understanding to build an accidentals background model for use in XZLD detector design and sensitivity projections

Summer 2025 Fall 2025 Winter 2025 Spring 2026 Summer 2026

Form cross-experimental task force

First comparison of 'apples-to-apples' plots, Initial integration of new info into existing accidentals modelling tools, start iteration with sensitivity studies

> Report on our best understanding of lone-S1 and lone-S2 sources, their spectra and their scaling, based on comparison of LZ and XENONnT data

Points for discussion:

- What is the best way to share a sufficient amount of data? Does the taskforce have full access to each experiment's data? Can they freely show each other plots? Do we need a formal request to the leadership of current experiments? Or does each side make plots, get them through the process for approval to show in public before sharing?
- Ex-situ studies and R&D needs.

# Backup

- Accidental coincidence backgrounds gain in significance as detectors get larger, necessitating more and more analysis effort with significant remaining unmitigated background levels and high loss in lifetime from cuts
- Better understanding is need for to predict how lone signal sources scale up, and what sources need special consideration in XLZD design/construction
- Both analysis and R&D efforts are needed to characterize, understand, and control these backgrounds for XLZD

### Detector parameters & accidental coincidence numbers

| Detector                                            | PandaX-II                          | XENON1T SR1                                                            | LUX             | PandaX-4t commissioning                | XENONnT SR0                     | LZ                                |
|-----------------------------------------------------|------------------------------------|------------------------------------------------------------------------|-----------------|----------------------------------------|---------------------------------|-----------------------------------|
| reference                                           | 10.1103/<br>PhysRevD.93.12200<br>9 | 10.1103/<br>PhysRevLett.121.11130<br>2, 10.1103/<br>PhysRevD.99.112009 | arXiv:1310.8214 | 10.1103/<br>PhysRevLett.127.26180<br>2 | arXiv:2303.14729,<br>xenon wiki | arXiv:2207.03764,<br>XLZD meeting |
| TPC height [cm]                                     | 60                                 | 97                                                                     | 48              | 118                                    | 149                             | 150                               |
| TPC diameter [cm]                                   | 64.6                               | 96                                                                     | 47              | 118                                    | 133                             | 150                               |
| Fiducial volume [t]                                 | 0.329                              | 1.3                                                                    | 0.118           | 3.7                                    | 4.2                             | 5.5                               |
| live days                                           | 80                                 | 279                                                                    | 85              | 86                                     | 95                              | 60                                |
| drift field [V/cm]                                  | 400                                | 100                                                                    | 181             | 110                                    | 23                              | 193                               |
| max drift time [us]                                 | 310                                | 700                                                                    | 324             | 820                                    | 2200                            | 951                               |
| ER events in WIMP window                            | 381                                | 627                                                                    | 587             | 2                                      | 134                             | 250                               |
| AC events in WIMP window                            | 2.2                                | 0.47                                                                   | 1.1             | 0.8                                    | 4.3                             | 1.2                               |
| S1 n-fold requirement                               | 3                                  | 3                                                                      | 2               | 2                                      | 3                               | 3                                 |
| isolated S1 [Hz]                                    | 1.5                                | 1                                                                      | 1               | 9.5                                    | 1.48                            | 2                                 |
| isolated S2 [Hz]                                    | 0.012                              | 0.0026                                                                 | 0.0005          | 0.0045                                 | 0.104                           | 0.02                              |
| AC rate w/o cuts based<br>on isolated S's [1/yr]    | 176.0                              | 57.4                                                                   | 5.0             | 1105.5                                 | 10678.8                         | 1199.6                            |
| Livetime loss from AC cut                           | 1%-2%                              | 4%                                                                     | 0.8%            | 7.3%                                   |                                 | 25%                               |
| After all cuts in WIMP<br>ROI: #AC/year             | 10.04                              | 0.61                                                                   | 0.04            | 3.40                                   | 16.52                           | 7.30                              |
| Max drift time<br>correction: #AC/(year<br>ms)      | 32.38                              | 0.88                                                                   | 0.12            | 4.14                                   | 7.51                            | 7.68                              |
| Surface area correction:<br>#AC/(year ms m^2) * 100 | 17.275                             | 0.201                                                                  |                 | 0.631                                  | 0.834                           | 0.724                             |

18

### How does the AC rate scale with detector mass?

```
In a 1:1 aspect ratio TPC, d=h Target mass m ~ V ~ d^3 d ~ m^{1/3}
```

1: Max drift time:  $T_d \sim d \sim m^{1/3}$ 

2: Lone S2 rate likely dominated by surface area:  $r_{\rm IS2} \sim A \sim m^{2/3}$ 

```
3: Lone S1 rate dominated by PMT dark noise

r_{DN} \sim N_{PMT} \sim A \sim d^2 \sim m^{2/3}

r_{IS1} = r_{DN} * Poisson(2, r_{DN}) (nfold = 3)

\sim m^2 exp(-m^{2/3})
```

```
Total AC rate

r_{AC} \sim T_d * r_{IS1} * r_{IS2} * (fraction in ROI) * (cut efficiency)

= a * m^3 * exp(-m^{2/3})
```

XENON1T:  $r_{AC}(1.3 t) = 0.6 1/yr => a = 0.9$ XENONnT:  $r_{AC}(4.2 t) = 16 1/yr => a = 2.9$ LZ:  $r_{AC}(5.5 t) = 7.3 1/yr => a = 1.0$ 



### Example of table with breakdown of S1 sources - 1

| Source                           | Reason                                                                                                                | Contribution region                                                     | Associated<br>cuts /<br>exclusions | Easy to remove in analysis?                                                                                                                   | Scaling                                                                      | Design impacts                                                            |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Dark<br>counts                   | PMT dark counts randomly piling up                                                                                    | Mostly<br>significant for<br>small S1s                                  | >= coincidence<br>requirement      | No                                                                                                                                            | N(PMTs) <sup>3</sup> *<br>coincidence<br>window<br>(scales with<br>detector) | PMT choice                                                                |
| Photon<br>trains                 | Potential<br>fluorescence<br>photons piling up<br>after a large signal,<br>fluorescence<br>source is still<br>unknown | Mostly<br>significant for<br>small S1s                                  | E/ph-train veto                    | No. Baseline<br>photon rate<br>remains quite<br>high, even after<br>e/ph-train veto                                                           | Interaction<br>rate* g2                                                      | Surface area/<br>volume of<br>fluorescing source                          |
| High<br>single<br>channel<br>S1s | Likely<br>malfunctioning<br>PMTs of some<br>sort, some fraction<br>due to after pulsing                               | Significant<br>population<br>across large<br>range of S1<br>pulse areas | High single<br>channel cut         | Somewhat. HSC<br>cut is effective at<br>large pulse<br>areas, less<br>effective at small<br>pulse areas due<br>to statistical<br>fluctuations | N(PMTs),<br>PMT voltage                                                      | Front-end<br>electronics with<br>large gain to<br>minimize PMT<br>voltage |

| Source         | Reason                                                                                         | Contribution region                                                     | Associated<br>cuts /<br>exclusions           | Easy to remove in analysis?                                      | Scaling                 | Design impacts                                                                                              |
|----------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------|
| Stinger<br>S1s | Electrons drift up<br>pass the anode<br>and create a flash<br>of light following a<br>SE/S2    | Significant<br>population<br>across large<br>range of S1<br>pulse areas | Remove S1-<br>like pulses ~us<br>after SE/S2 | Yes                                                              | Single<br>electron rate | Better alignment<br>would reduce this<br>effect. However,<br>very useful tag to<br>remove hotspot<br>events |
| RFR S1s        | Events in the<br>reverse field region<br>or charge of the<br>detector have no<br>associated S2 | Mostly<br>significant for<br>large S1s                                  | S1 TBA cut                                   | Yes, generally<br>large S1s and<br>easy to remove<br>in analysis | Volume of<br>RFR region | Reduction of RFR region                                                                                     |

### Example of table with breakdown of S2 sources - 1

| Source             | Reason                                                                                       | Contributio<br>n size                                                           | Associated cuts/<br>exclusions                       | Easy to<br>remove in<br>analysis?                                                                                   | Scaling                                                                            | Design impacts                          |
|--------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------|
| Electron<br>trains | Electrons captured<br>and released as<br>they drift through<br>the liquid bulk               | Mostly < 3<br>electrons<br>after<br>removing<br>large<br>amounts of<br>livetime | E/ph-train veto                                      | Yes, but<br>results in<br>significant<br>amounts of<br>livetime<br>removed                                          | Overall<br>rate ~<br>volume of<br>bulk,<br>Length of<br>train ~<br>drift<br>length | Purity/electron<br>lifetime             |
| Grid<br>emission   | Many theories,<br>including high fields<br>associated with<br>defects, oxide<br>layers, etc. | Can have<br>significant<br>impact up to<br>~5 or so<br>electrons                | High electron rate<br>veto, spatial<br>cylinder veto | No. Time-<br>dependent<br>and hard to<br>detect low<br>level<br>emission.<br>Also causes<br>operational<br>problems | Area of<br>grids, grid<br>voltage                                                  | Grid design,<br>treatments +<br>testing |

### Example of table with breakdown of S2 sources - 2

| Source                                | Reason                                                                                               | Contributio<br>n size                                                                          | Associated cuts/<br>exclusions                     | Easy to<br>remove in<br>analysis?                                                                                                | Scaling                                                             | Design impacts                                     |
|---------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------|
| Radiogenic<br>grid decays             | Rn plateout on the grid wires                                                                        | Significant<br>population<br>across large<br>energy<br>range. Key<br>background<br>for S2-only | Drift time cut, Pulse<br>width cut for S2-<br>only | Easy to<br>remove gate<br>contribution.<br>Cathode can<br>be mitigated<br>but fraction is<br>irreducible<br>due to<br>diffusion. | Area of<br>grids,<br>amount<br>of<br>diffusion<br>~ drift<br>length | Determine ideal<br>drift voltage                   |
| Near liquid<br>surface and<br>gas S2s | S1 and S2s<br>overlap/merge and/<br>or S1 is missing                                                 | Significant<br>population<br>across large<br>energy<br>range                                   | S2 shape cuts                                      | Generally<br>targeted by<br>shape cuts,<br>so easier to<br>remove at<br>large pulse<br>areas, harder<br>at small pulse<br>areas  | Volume<br>of gas<br>region                                          | Extraction<br>region design                        |
| Glue ring<br>events                   | Events in the glue<br>ring region are mis-<br>reconstructed<br>inwards and often<br>have a merged S1 | Significant<br>population<br>across large<br>energy<br>range                                   | S2 position<br>reconstruction<br>quality cut       | Easier to<br>remove at<br>large pulse<br>areas, harder<br>at small pulse<br>areas                                                | Volume<br>of glue<br>ring<br>region                                 | Eliminate or<br>reduce size of<br>glue ring region |