Smart cold electronics

XLZD Meeting 2 Jul 2025 Alessandro Razeto for the LNGS/AQ group

- A strong group with proven experience
 - Radiopurity
 - Packaging
 - Photodectors
 - Cryo-electronics
 - Integrated electronics

• LNGS + University of L'Aquila

RESULTS PAST

 \bigcirc

Why cold electronics?

- A signal to noise over 30 can be easily achieved (see later)
 - A small signal (mV level) on long cable can get noisy and attenuated
 - Pre-amplification produces larger signals that can be easily transmitted for 10 meters with small cables
- The largest noise contribution in XenonNT is from ground loops
 - From single ended (coax) cabling
 - Differential transmision would suppress it
- We could keep PMT HV lower
 - Improve long term stability for PMTs
 - DS50 PMT were running at a gain of 10⁵ e⁻ with SNR > 10

- Coaxial cables are not radiopure
 - Contaminants remain trapped in the mesh
 - Radon emanation
 - Differential transmission over twisted cables with PTFE/FEP jacket
 - With solid conductor if needed
- Low voltage components are radiopure
 - In term of U/Th
 - Plastic capacitors, inlined resistors, wire bonded chips
 - Largest contamination from the divider components
 - High voltage ceramic capacitors and 10 $M\Omega$ resistors
- Radiopure PCBs
 - LNGS will install in the next few years a facility for fused silica PCBs
 - It may be possible to deposit there LV resistors

- A much simpler detector integration
 - Reduced number of HV cables
 - On divider HV switch
 - Reduced number of signal cabling
 - Easier signal feedtroughs

- Strongly reduce the budget
 - [−] Feedtroughs, digitizers, ... → several M€

Cons

- Of course things can go wrong
 - More components that can fail
- Not everything can be done in cold
 - Full digitization not possible
 - Limited by the power dissipation in LXe
- The dynamic range of each channel will be smaller
 - PMTs can reach 10⁵ photons
 - Impossible to match with standard configuration (but semi-logaritmic solutions can be implemented)
- Immutable
 - Once the detector is installed it is hard to modify the read-out chain

- () -

PMTs

PMTs

A graded approach Amplify in cold and digitize ouside

rentia Fully diffe

Parasitic power

 \bigcirc

A graded approach Cabling

- Differential transmission goes with twisted pairs
 - [–] The simplest solution is a pair from a CAT.6 RJ45 cable
 - Yes the ethernet cable
 - PTFE isolated
 - SAMI produced radiopure twisted pair cables for LEGEND
- The feedtroughs can be implemented with PCB
 - [–] Leak < 10^{-10} mbar/l/s

• A differential to single ended receiver can be used

Cabling

XLZD

A graded approach HV distribution

- It is possible to bin the PMTs in groups with similar curve HV-vs-GAIN
 - ⁻ During the acceptance tests
- We suggest to bring a single HV to group of similar PMTs
 - One each 25?
- Then each PMT can turn off by itself when needed
 - With an on-board switch
 - Without additional cables or controls
 - Remove power to the cold-amplifier and disable the PMT as well

HV distribution

XLZD

A graded approach Amplify and digitize cold

- We have the technology to develop chips working in LXe
 - PDK certified in cryogenic environment
- <u>A full digitizer however uses way too much power</u>
 - Too much heat would prevent Rn-chain topological tagging
 - Boubbling
- The proposed solution is to develop a programmable TDC with time over threshold
 - [–] Per each anode 2.5 x 2.5 cm²
 - And to bring out the sum of a PMT group analog signal

Time over Threshold

Time & amplitude for each photoelectron

~ 10k anode in XLZD, the pileup of S1 at 3 MeV ~ 3 pe per channel

XLZD

A graded approach Fully integrated solution

unit Integrated

- 25 x 25 cm² module
 - 25x 2" PMTs
- 1x HV
- 1x control line
- 1x digitized data
- 1x analog sum
 - Of the 100 anodes

unit Integrated

Summary

- We already have a cryogenic pre-amplifier
 - Low noise
 - Low power
- A highly integrated unit can be developed in a few years
 - 25x25 cm² aggregated photodetector with 2" PMTs
 - with a single HV and a single RJ cable for signal and control
 - With low power (20 mW/PMT) and high radiopure components
 - <u>3" PMTs can be used as well</u> → 4x4 PMTs
 - Maybe with a PCB piggyback for the cold-electronics
- The LNGS group is actively working on this topic
 - Proven results with simple pre-amplifier
 - Working on the ASIC design
 - Working on the smart power distribution
 - Working on radiopure PCBs

Thank you

Technologies

To overcome the limitations

- Ceramic capacitors have high U & Th
 - Plastic, silicon, tantalum capacitors have low high-Z contaminations
 - Though they may have 40K and other traces
- PCB can be produced in fused silica
 - With embedded resistors with laser trimming
 - Or in pyralux/cyrlex/...
- Connectors contain glass-fiber
 - can be produced out of pure nylon
- Radio-pure inductors exists

- Pure Si BJT not working below 200 K
 - Freeze-out of minority carriers
 - Ethero-junction BJT are working down to 20 K
 - With very low noise figure
- FET transistors are working in LN2
 - [–] Based on majority carriers

 For both technologies both single transistors and op-amp are available

Field effect transistors

- Field effect transistors are based on majority carriers
- FETs work down to the freeze-out
- Higher gain and bandwidth
- Lower noise
- LOW POWER

- Trapping / Recombination

