

Photosensors for XLZD

XLZD collaboration meeting July 2, 2025 LNGS

Laura Baudis (UZH), Masaki Yamashita (U Tokyo), Shingo Kazama (Nagoya U) for the photosensor group

PMT options

• R11410-21/22, 3" diameter

• R12699-406-M4, 2" square

PMT main parameters

Pa	arameter	R11410-21	R13111	R12699-406-M4	Unit		
Spectral Response			160 to 650		nm		
Window Material		Synthetic Silica					
Photocothodo	Material		Bialkali		-		
Photocathode	Minimum Effective Area	Ф64	Ф70	48.5 x 48.5	mm		
Dynada	Structure	Box & Line	ear-focused	Metal channel dynode	-		
Dynode	Number of Stages	1	2	10	-		
Number of Anode			1	4	-		
Stem		Ceramic	Metal with	glass beads	-		
Maximum Supply Voltage	Between Anode and Cathode	17	750	1100	V		
Maximum Pressure-resistan	ce (Gauge)	0.3	0.2	0.5	MPa		
Quantum Efficiency at 175	nm (Typ.)	32.5	28	33	%		
Gain (Typ.)		5.0 x 10 ⁶	7.5 x 10 ⁶	1.5 x 10 ⁶	-		
Time Response	Anode Pulse Rise Time	5.5	6 ^{*1}	1.2	ns		
	Electron Transit Time	46	50 ^{*1}	5.9	ns		
(Typ. Max.)	Transit Time Spread (FWHM)	9	3.5 ^{*1}	0.41	ns		
Dark Counts Rate at 25°C (Тур.)	4000	1500	No spec	s ⁻¹		

Table provided by Hamamatsu, for internal use only

R11410 PMTs

Baseline photosensor for XLZD: design book arXiv:2410.17137

• Efforts to reduce their overall activity (e.g., reduce radioactivity of the stems)

Motivation

• TPC PMTs and cryostat dominate the materials background contribution

• Especially relevant for the $0
u\beta\beta$ -decay search

			²¹⁴ Bi ev	vents	
	-	L	Z	XLZD	Sensitivity estimate for XLZD (60 t active)
	-	$(967 \text{ kg} \times 1000 \text{ d})$		$(8.2 \text{ t} \times 10 \text{ years})$	10 ⁻²
Component]	Nominal	Reduced	Projected	10 1_{36} V _a (2 μ 3 β) $0\nu\beta\beta$ Materials
TPC PMTs		2.95	0.98	0.61	$\mathbf{ROI} before / after vetoes / \mathbf{ROI}$
PMT structures		2.75	0.54	0.33	$\sim 10^{-3}$
Field-cage resisto	ors	2.46	0	0	¹³⁷ Xe (Kamioka)
Internal sensors		1.81	0.22	0.14	$\frac{137}{2} \text{Xe} (\text{LNGS}) $
PMT bases		1.52	0.39	0.24	\times 10 ⁻⁴
Cryostat		1.26	0.82	0.51	10 13 Xe (Boulby)
PMT cables		1.01	0.16	0.10	222Rn
Field-cage rings		0.97	0.40	0.25	-137Xe (SURF)
OD tank supports	ts	0.73	0	0	2 10^{-5}
OD foam		0.71	0	0	
Skin PMTs		0.69	0.06	0.04	¹³⁷ Xe (SNOLab)
Other skin parts		0.68	0.05	0.03	
Other component	ts	3.56	1.42	0.88	$\begin{array}{c} 10 \\ 2300 \\ 2350 \\ 2400 \\ 2450 \\ 2500 \\ 2550 \\ 2600 \\ 2600 \\ \end{array}$
Total		21.10	5.05	3.15	Energy [keV]

5

XLZD double beta decay study, Journal of Physics G, 2025

Motivation

• The main ²³⁸U, ²²⁶Ra, ²²⁸Ra, ²²⁸Th, ⁴⁰K contributions: from the stems

seal

R11410 PMT stems

Several versions screened with Gator at LNGS

- Low-activity glass stems
- Refined metal stems with glas beads
- XENONnT stems (2015)

Low-activity glass stems

Geant4 model 7

R11410 PMT stems

Several versions screened with Gator at LNGS

- Low-activity glass stems (67.8 d)
- Refined metal stems (42.2 d)
- XENONnT stems (2015)

R11410 PMT stems

Several versions screened with Gator at LNGS

- Low-activity glass stems (67.8 d)
- Refined metal stems (42.2 d)
- XENONnT stems (2015)

RefinedLow-activitymetal stemsglass stems

A [mBq/stem]	238 U	²²⁶ Ra	²²⁸ Ra	²²⁸ Th	235 U	⁶⁰ Co	40 K	¹³⁷ Cs
Refined metal stems	<6.01	<0.18	<0.35	<0.28	<5.05	0.08(2)	0.9(3)	<0.06
Glass stems	<4.81	1.11(7)	0.27(8)	<0.45	<6.3	<0.09	1.6(3)	<0.08
XENOnT stems	<18.4	1.0(3)	<0.81	<0.79	0.46(11)	0.34(5)	1.9(6)	<0.40

Analysis by Alex Bismark, UZH

Screened with Gator at LNGS

- Eight units placed in 2 PTFE holders; 67 days (after data cleaning)
- Sixteen units placed in 4 PTFE holders; 30.7 days (run ongoing)
- Background run with PTFE holders: 57.5 days

Sixteen units

Francesco Piastra, UZH

*R17317

Screened with Gator at LNGS

- Eight units placed in 2 PTFE holders; 67 days (after data cleaning)
- Sixteen units placed in 4 PTFE holders; 30.7 days (run ongoing)
- Background run with PTFE holders: 57.5 days

MC simulations

Sensitivity versus time

MC + analysis by Alex Bismark, UZH

Screened with Gator at LNGS

- Eight units placed in 2 PTFE holders; 67 days (after data cleaning)
- Sixteen units placed in 4 PTFE holders; 30.7 days (run ongoing)
- Background run with PTFE holders: 57.5 days

Screened with Gator at LNGS

- Eight units placed in 2 PTFE holders; 67 days (after data cleaning)
- Sixteen units placed in 4 PTFE holders; 30.7 days (run ongoing)
- XENONnT PMTs (180 units, see EPJ-C 82, 2022)

A [mBq/PMT]	238U	²²⁶ Ra	²²⁸ Ra	²²⁸ Th	235 U	⁶⁰ Co	⁴⁰ K	¹³⁷ Cs
8 Units	<11.0	<0.40	<0.50	<0.37	<0.31	0.31±0.04	11.8±1.4	<0.19
16 Units	<6.0	<0.21	<0.42	<0.24	0.14±0.06	0.33±0.04	11.1±1.4	0.09±0.03
XENONnT PMTs	9±2	0.47±0.02	0.47±0.07	0.46±0.02	0.4±0.1	1.05±0.03	14.2±0.5	<0.14

Analysis by Alex Bismark, UZH

Preliminary results from 30.7 days

Nomenclature and further steps

• PMT with metal stem with glass beads: **new name R17317**

- Further planned reduction in radioactivity See 2020 JINST 15 P09027
 - Photocathode with highly pure K used for XMASS (R13111)
 - Glass beads with low-radioactivity glass used for XMASS (R13111)
 - Material provided by XMASS when R13111 were produced

R11410-21 and R17317

R11410-21 and R17317

R13111

³⁹K-rich Photocathode

- Most of the ⁴⁰K in R10789 comes from the photocathode material
- Chemicals used to make photocathode material contain potassium, which contains ⁴⁰K with a natural abundance of 117 ppm
- ³⁹K enriched material was used to make the photocathode
- ⁴⁰K in a material reduced to ~1/100

Samples	²²⁶ Ra	²³⁸ U	²¹⁰ Pb	²²⁸ Ra	⁴⁰ K	⁶⁰ Co
		(²³⁴ Th)				
without enrichment	< 82	$< 3.0 \cdot 10^4$	$< 8.8 \cdot 10^4$	$< 3.4 \cdot 10^2$	$(1.0 \pm 0.1) \cdot 10^7$	$< 9.9 \cdot 10^2$
with enrichment	$< 2.2 \cdot 10^2$	$< 1.3 \cdot 10^{3}$	$< 8.9 \cdot 10^{3}$	$< 1.9 \cdot 10^{2}$	$(8.4 \pm 0.4) \cdot 10^4$	< 52

uBq/g HPGe measurement with 20g material

Cathode \Spring Dy 12 \Anode mesh Spring Body

µBq/PMT	²²⁶ Ra	²³⁸ U	²²⁸ Ra	⁴⁰ K	⁶⁰ Co
R13111 in 2015	$(3.8 \pm 0.7) \cdot 10^2$	$< 1.6 \cdot 10^{3}$	$(2.9 \pm 0.6) \cdot 10^2$	$< 1.4 \cdot 10^{3}$	$(2.2 \pm 0.5) \cdot 10^2$
R13111 in 2016	$(4.4 \pm 0.6) \cdot 10^2$	$< 1.4 \cdot 10^{3}$	$(2.0 \pm 0.6) \cdot 10^2$	$(2.0 \pm 0.5) \cdot 10^3$	$(1.3 \pm 0.4) \cdot 10^2$
R11410-21(XENON1T) [15]	$(5.2 \pm 1.0) \cdot 10^2$	<1.3 · 10 ⁴	$(3.9 \pm 1.0) \cdot 10^2$	$(1.2 \pm 0.2) \cdot 10^4$	$(7.4 \pm 1.0) \cdot 10^2$
R11410-10(PandaX) [3]	$< 7.2 \cdot 10^2$		<8.3· 10 ²	$(1.5 \pm 0.8) \cdot 10^4$	$(3.4 \pm 0.4) \cdot 10^3$
R11410-10(LUX) [19]	$< 4.0 \cdot 10^2$	$< 6.0 \cdot 10^{3}$	$< 3.0 \cdot 10^{2}$	$< 8.3 \cdot 10^{3}$	$(2.0 \pm 0.2) \cdot 10^3$

n

tube

Glass beads used for Stem

K. Abe et al. 2020 JINST 15 P09027

- High purity reagents were obtained from Kojundo Chemical Laboratory Ltd.
- The milling process uses ceramic tools (ceramic balls and a ceramic pot). We provide high purity ceramic materials for them.

Table 2 . Results of HPGe measurements for the glass-bead-related materials.	The unit is μ Bq/g.	Errors
quoted are purely statistical. See the text for the systematic error.		

Samples	component ²²⁶ Ra		²³⁸ U	²¹⁰ Pb	²²⁸ Ra	⁴⁰ K	⁶⁰ Co
	ratio [%]		(²³⁴ Th)				
SiO ₂ 5N grade	64	< 11	$< 1.5 \cdot 10^2$	$< 1.1 \cdot 10^3$	< 13	$< 1.5 \cdot 10^2$	< 4.4
B ₂ O ₃ 4N5 Grade	3	< 45	$< 1.8 \cdot 10^2$	$< 4.6 \cdot 10^2$	< 44	$< 4.5 \cdot 10^2$	< 12
Na ₂ B ₄ O ₇ 4N5 Grade	24	$(1.8 \pm 0.6) \cdot 10^2$	$< 3.9 \cdot 10^2$	$< 1.3 \cdot 10^3$	< 74	$< 1.1 \cdot 10^3$	< 25
Al(OH) ₃ 4N grade	9	< 25	$< 2.3 \cdot 10^2$	$< 1.5 \cdot 10^3$	< 42	$< 2.0 \cdot 10^2$	< 7.6
Sum		36 ± 15	$< 1.3 \cdot 10^2$	$< 6.5 \cdot 10^2$	< 19	$< 2.6 \cdot 10^2$	< 6.6
Glass after synthesis		12 ± 4	57 ± 26	< 61	< 9.4	$(1.5\pm 0.5)\cdot 10^2$	< 2.5
Glass after milling		24 ± 5	< 97	< 99	17 ± 4	$(1.3 \pm 0.6) \cdot 10^2$	< 4.0
Glass beads		< 15	< 72	$< 1.9 \cdot 10^2$	< 9.7	$(1.7 \pm 0.7) \cdot 10^2$	< 2.0
R10789 glass beads		$(8.1 \pm 0.1) \cdot 10^2$	$(3.3 \pm 0.6) \cdot 10^2$	$< 4.1 \cdot 10^2$	$(1.4 \pm 0.1) \cdot 10^2$	$(1.4 \pm 0.1) \cdot 10^3$	< 2.3

Glass 0.765 g/PMT HPGe measurement @ Kamioka

A [mBq/PMT]	238	²²⁶ Ra	²²⁸ Ra	²²⁸ Th	235 U	⁶⁰ Co	40 K	¹³⁷ Cs
R17317	0.25(4)	0.34(1)	0.015(3)	0.015(2)		<0.9x10 ⁻³	0.65(2)	
R13111	<0.055	<0.011	<0.01	<0.0074		<1.5x10 ⁻³	0.13(5)	

Production of 3" PMTs

- Lead time: 9 months ARO
 - then, 50 PMTs per month
 - if we aim for 2500 units (this includes contingency, 2364 in the DB):
 - 58 months ~ 4.8 years
- Lead time does not include screening of materials (+ 1 year?)
- Assume we place the orders in early 2027
 - oproduction would start late 2027 (9 months ARO)

• 2027 + 6 years!

- this scenario assumes we do not reuse LZ and nT PMTs
- Visit Hamamatsu November 2024 (Laura, Masaki, Masatoshi, Shingo)
 Discussion on 3" PMT, 2" square PMT, SiPM
 - Hamamatsu agreed to use R13111 technologies for XLZD

Characterisation in LXe (MarmotX) and in a 2-phase TPC (Xams)

•2506.04844: UZH and Nikhef (Alex, Maxi, Marijke)

●screening with Gator (Alex)

• Leakage issue around the pins (Hamamatsu aims to solve within 2025)

• Long-term gain stability measurements in MarmotX

2506.04844

Comparison with the 3" unit

	R12699-406-M4	R11410-21
Dimensions (longitudinal / lateral)	14.8 mm / 56 mm [11]	114 mm / 77.5 mm [<mark>31</mark>]
Packing density	75.0%	61.8 %
Dynode structure	Metal channel [11]	Box & linear-focused [31]
Number of dynode stages	10 [<mark>11</mark>]	12 [31]
Quantum efficiency at 175 nm	33 % [11]	32.5 % [31]
Operation voltage (nominal / max.)	1000 V / 1100 V [<mark>11</mark>]	1500 V / 1750 V [<mark>31</mark>]
Gain (T _{room})	$(3.3 \pm 0.7) \cdot 10^6$	$(8.4 \pm 2.3) \cdot 10^{6}$ [15]
SPE resolution (gain ~ $2 \cdot 10^6$, T _{room})	(37 ± 3) %	$(30 \pm 3) \% [21]$
Dark count rate (> $1/4$ PE)	$(0.4 \pm 0.2) \text{Hz/cm}^2$	$(1.4 \pm 0.7) \text{Hz/cm}^2 [21]$
Time response (RT / transit time / TTS)	1.2 / 5.9 / 0.41 ns [11]	5.5 / 46 / 9 ns [<mark>31</mark>]
Separable afterpulse rate	(1.1 ± 0.2) %/PE	(8.6 ± 2.2) %/PE [21]

2506.04844

Screening results

D	Sample	Sample Description				Livetime Backgr	e Sample / ound [d]	Units	Notes	
0	Initial n	nodel (2× R12	699-406-M4)		2×104	41.7	41.7 / 73.7		mBq/cm ² Full PM7 Glass be;	
1	Improve	ed LRI metal (2× R12699-4	06-M4/NG)	2×104	47.8	/ 73.7	mBq/cm ²	Full PMT Glass bea	volume d region only
2	Improve	ed LRI glass (3	3× R12699-40)6-M4/NG)	3 × 104	40.8	/ 32.2	mBq/cm ²	Full PMT Glass bea	Volume d region only
3	R8520-	06-Al (XENO	N100)		Various	Var	Various		From [33]
4	R11410	R11410-21 (XENONnT)		Various	Var	rious	mBq/cm ²	From [9]		
ID	²³⁸ U	²²⁶ Ra	²²⁸ Ra	²²⁸ Th	²³⁵ U	⁶⁰ Co	⁴⁰ K	¹³⁷ Cs	⁵⁴ Mn	⁵⁸ Co
0	< 0.260	0.026(4)	< 0.028	< 0.023	< 0.008	0.055(5)	1.47(16)	< 0.005	< 0.006	< 0.005
0	< 0.376	0.028(4)	< 0.031	< 0.023	< 0.011	0.064(6)	1.78(19)	< 0.006	< 0.007	< 0.006
1	< 0.294	0.023(4)	< 0.023	< 0.015	< 0.009	0.0036(16)	1.45(15)	< 0.005	0.0070(15)	0.0103(18)
1	< 0.425	0.026(4)	< 0.026	< 0.018	< 0.012	0.0041(18)	1.76(19)	< 0.006	0.0086(19)	0.012(2)
2	< 0.404	< 0.015	< 0.022	< 0.017	< 0.010	0.0057(17)	1.29(14)	< 0.006	0.0068(17)	0.0055(15)
2	< 0.621	< 0.017	< 0.025	< 0.020	< 0.013	0.007(2)	1.57(17)	< 0.008	0.008(2)	0.0067(18)
3	< 3.569	< 0.067	< 0.140	0.071(17)	< 0.159	0.144(10)	2.86(18)	< 0.024	_	_
4	0.28(6)	0.0146(6)	0.015(2)	0.0143(6)	0.012(3)	0.0326(9)	0.441(16)	< 0.004	_	_

2506.04844

Production of 2" PMTs

• Lead time: 5 months ARO

- •then, 70 PMTs per month
- if we aim for 3750 units (this includes contingency, xxxx needed):
- 58 months ~ 4.8 years
- •Lead time does not include screening of materials

Mixed option: 3-inch PMTs bottom, 2-inch PMTs top

- production can proceed in parallel, as production lines are different
- we would likely gain ~ **two years**

Other considerations

• LXe test of the 16 units with new stems: where, when?

- Can we reuse LZ and nT PMTs (but higher radioactivity)? We need detailed MC studies (and also see how many good PMTs are left after 2028)
- Quartz fluorescence backgrounds? (arXiv:2505.08067)

→ Comparison of fluorescence properties for different grades of quartz glass is ongoing

 Base design: compare LZ, XENONnT designs, decide on any required improvements (linearity, radioactivity, etc)

• See also talk by Alessandro Razeto (re: cold electronics)

Cables, connectors

Support structures

SiPMs: Dark Count

• At LXe T: huge DC rate is mainly due to the band-to-band tunnelling effect

- Developed VUV SiPMs with decreased avalanche electric field to suppress the tunnelling effect
- Managed to decrease DCR of VUV4 SiPMs by a factor of 5 8
- Reached DCR of O(0.01) Hz/mm²
 - → Hamamatsu is currently developing new SiPMs ("VUV5") with further reduced DCR

0:014	VIIV 4 New VIIV SiPM			1.02						OV :	= 5 V
SIPIM	VUV 4	Nev		10	+	VUV4_	1				•
Operation Voltage	40-50 V		80-100 V	10^{1}	+	VUV4_ New_1	2			•	*
Active Area		3×3 mm ²			+	New_2	2		•		
Number of pixels	14400		6400	DCR [٠	•	• •	• •	Ŧ		
Pixel size	50×50 µm²		100×100 µm²	10-1	Ŧ	Ŧ	• •	*		50	um
Fill factor	58%	74%	>> 74 %	10 ⁻²	50	LXe Te 160	2000 170 Top	180	190	200	210

SiPMs: PDE & RI

Reducing DCR worsens PDE; can be compensated for with optimised fill factor
 → New SiPMs: PDE > 30% depending on over-voltage

●Concerning RI: Hamamatsu currently develops new VUV SiPMs with TSV chips
 → No ceramic packaging

•VUV5 = "lower DCR" + "better PDE" + "lower RI"

The end

Hamamatsu visit, November 2024

HAMAMATSU

XLZD Meeting at HPK/ETD

Additional slides

3" PMT screening

				Isotope	Energy (keV)	Line BR	Effic	BRxEffic
				234Th	92.6	0.0433	0.00466	0.000202
				235 U	185.72	0.572	0.0134	0.00765
				²¹² Pb	238.632	0.436	0.0115	0.00500
				²¹⁴ Pb	295.224	0.184	0.0117	0.00215
				²²⁸ Ac	338.32	0.114	0.0115	0.00132
	16 PMTs			²¹⁴ Pb	351.932	0.356	0.0114	0.00404
				²⁰⁸ Tl	583.187	0.3054	0.00798	0.00244
	This work	Eight R17317 $\rm PMTs$	XENONnT PMT sc	²¹⁴ Bi	609.312	0.4549	0.00837	0.00381
23811	< 6.0	< 11.0	0 + 2	137Cs	661.657	0.8499	0.00915	0.00778
²²⁶ Ra	< 0.21	< 0.40	0.47 ± 0.02	⁵⁴ Mn	834.838	0.999746	0.00831	0.00830
228 Ra	< 0.42	< 0.50	0.47 ± 0.07	46 Sc	889.271	0.99984	0.00758	0.00757
228 Th	< 0.24	< 0.37	0.46 ± 0.02	²²⁸ Ac	911.196	0.262	0.00656	0.00172
$^{235}\mathrm{U}$	0.14 ± 0.06	< 0.40	0.4 ± 0.1	²²⁸ Ac	968.96	0.159	0.00660	0.00105
60 Co	0.33 ± 0.04	0.30 ± 0.04	1.05 ± 0.03	²¹⁴ Bi	1120.29	0.1491	0.00634	0.000945
40 K	11.1 ± 1.3	11.8 ± 1.4	14.2 ± 0.5	46 Sc	1120.54	0.99987	0.00676	0.00676
$^{137}\mathrm{Cs}$	0.09 ± 0.03	< 0.19	< 0.14	⁶⁰ Co	1173.23	0.9985	0.00666	0.00665
^{54}Mn	0.08 ± 0.03	0.18 ± 0.04	_	⁶⁰ Co	1332.49	0.9998	0.00621	0.00621
58 Co	0.06 ± 0.02	0.12 ± 0.03	_	⁵⁸ Co	810.775	0.99	0.00820	0.00812
				⁴⁰ K	1460.88	0.1055	0.00626	0.000660
				214 Bi	1764.49	0.1531	0.00533	0.000816
				$ ^{208}$ Tl	2614.51	0.3584	0.00372	0.00133

3" PMT screening

16 PMTs

3" PMT screening

16 PMTs

Single-Photon Responses

	Over- voltage	VUV-4 50 μm	New 50 µm	New 100 µm
breakdow @ 165	n voltage K [V]	44.4	83.4	84.4
	3 V	1.0	0.6	1.6
1pe Gain [×10 ⁶]	5 V	1.7	1.0	2.6
	7 V	2.4	1.4	3.6

Changes w.r.t. the original SiPM

- •No significant changes in waveform shapes
- •Breakdown voltage increased by 40 V
- •1PE gain becomes smaller at the same OVs, but it still has ~10⁶ gain

Temperature [K]

Pulse Area [p.e.]

Cross-talk Probability

•As expected, cross-talk probability for VUV4 and new SiPMs is almost the same at the same 1PE gain.

•SiPM with a100 um pixel has a smaller cross-talk probability because it has a larger active area (smaller chance for infrared photons to propagate to nearby SPADs.)

•No significant temperature dependence was observed.

Afterpulse Probability

Afterpulse probability in this study is defined by N(AP) / N(1pe)

- •AP probability for new SiPMs is smaller at the same 1PE gain, probably due to smaller dope concentration.
- 100 µm pixel has a bit smaller AP probability
- •No significant temperature dependence was observed.