

LowRad

low radon and low internal radioactivity

purification/distillation for next generation liquid xenon experiments

On behalf of the ERC AdG LowRad project at University of Münster: Lutz Althüser, Robert Braun, Volker Hannen, Christian Huhmann, David Koke, Ying-Ting Lin, Philipp Schulte, <u>Daniel Wenz</u>, *Christian Weinheimer

DFG

Bundesministerium für Bildung und Forschung

wissen.leben

Institute for Nuclear Physics University Münster

PostDocs

Speaker

*PI

- Anthropogenic ⁸⁵Kr ($T_{1/2} = 10.76$ years):
 - 2.33 × 10⁻¹¹ ⁸⁵Kr in ^{nat}Kr
 - Commercial Xe: ^{nat}Kr/Xe > 10⁻⁹ (ppb)
 - Needs to be removed once, but can reenter

- Anthropogenic ⁸⁵Kr ($T_{1/2} = 10.76$ years):
 - $2.33 \times 10^{-11} {}^{85}$ Kr in nat Kr
 - Commercial Xe: ^{nat}Kr/Xe > 10⁻⁹ (ppb)
 - Needs to be removed once, but can reenter
- Achieved:
 - XENONnT: ^{nat}Kr/Xe < (56 ± 36) × 10⁻¹⁵ (ppq) arXiv:2501.10993 (26 ppq at local test in Münster via cryogenic distillation) PRL 129, 161805 (2022)
 - LZ: ^{nat}Kr/Xe < (186 ± 26) × 10⁻¹⁵ (ppq) arxiv:2410.17036 (via gas chromatography)
- XLZD requirement: **30 ppq** arXiv:2410.17137

⁸⁵Rb

XLZD meeting, LNGS 2025

5 6

- ²²²Rn ($T_{1/2} = 3.8$ days):
 - Emanation from materials (0.4 μBq/kg)
 - Ways of mitigation:
 - Avoid: Screening, selection, design...
 - **Remove**: cryogenic distillation
 - **Tagging**: ²¹⁸Po- α tagging

²²²Rn

- ²²²Rn ($T_{1/2} = 3.8$ days):
 - Emanation from materials (0.4 μBq/kg)
 - Ways of mitigation:
 - Avoid: Screening, selection, design...
 - **Remove**: cryogenic distillation
 - **Tagging**: ²¹⁸Po- α tagging
- Achieved:
 - XENONnT: 0.9 μBq/kg arXiv:2502.04209
 (20 slpm GXe + 200 slpm LXe = 80 kg/h)
 - LZ: **1.8 μBq/kg** with rejection via tagging arXiv:2410.17137
- XLZD requirement: **0.1 μBq/kg** (10⁻²⁶) arxiv:2410.17036

Requires improvements on all fronts

Daniel Wenz

Cryogenic distillation in a nutshell

- Exploits difference in vapor pressure of fluids in mixture
 - Separation efficiency given by relative volatility

$$\alpha_i = \frac{p_i}{p_{\rm Xe}}$$

*at 173 K

- Krypton: $\alpha_{Kr} = 10.5^*$, extract...
 - ...Kr-enriched offgas from the top
 - ...clean xenon from the bottom

Cryogenic distillation in a nutshell

- Exploits difference in vapor pressure of fluids in mixture
 - Separation efficiency given by relative volatility

 $\alpha_i = \frac{p_i}{p_{\rm Xe}}$

*at 173 K

- **Krypton**: $\alpha_{Kr} = 10.5^*$, extract...
 - ...Kr-enriched offgas from the top
 - ...clean xenon from the bottom
- **Radon**: $\alpha_{Rn} = 0.1^*$, extract...
 - ...clean xenon from the top
 - Let Rn decay inside of the reboiler ($T_{1/2} = 3.8$ days)

Goals of ERC Advanced Grant LowRad of C. Weinheimer

- Develop technologies for:
 - Next-generation experiments with around 75 t of LXe
 - Continuous/online ⁸⁵Kr removal (30 ppq ^{nat}Kr)
 - Another factor 10^* in ²²²Rn reduction (0.1 μ Bq/kg)
- R&D for novel purification methods
- Methods for physics searches/analyses
- Pave the way for an all-in-one purification & distillation system
- Complete purification & distillation demonstrator

*A factor 6 through active removal times a factor 3 by avoidance and tagging

Loss-free online Krypton removal

- Why continuous Kr removal?
 - Contamination due to Air "leaks" (∝ #Flanges), or operations e.g. in XENONnT
 - Enables regular ³⁷Ar ($T_{1/2} = 35$ d) low energy calibration (To study efficiency near detector threshold)
- Challenge:
 - Requires 1 % offgas:

Loss-free online Krypton removal

- Why continuous Kr removal?
 - Contamination due to Air "leaks" (∝ #Flanges), or operations e.g. in XENONnT
 - Enables regular ³⁷Ar ($T_{1/2} = 35$ d) low energy calibration (To study efficiency near detector threshold)
- Challenge:
 - Requires 1 % offgas:

 $2.9 \frac{\text{kg}}{\text{h}} \cdot \frac{75 \text{ tonne}}{8.6 \text{ tonne}} \cdot 10^{-2} \approx 0.26 \frac{\text{kg}}{\text{h}} \implies 6 \frac{\text{kg}}{\text{d}}$ $\cdot 10^{-3} \qquad 6 \frac{\text{g}}{\text{d}}$ $\cdot 6 \frac{\text{g}}{\text{d}}$ Manageable offgas plus place for online Kr monitoring

Loss-free online Krypton removal

- Developed McCabe-Thiele calculator based on TESPy and CoolProp
- Designed demonstrator column with
 - Input: 1 kg/h with nat Kr/Xe of 5 × 10⁻¹² (ppt)
 - Output: $^{nat}Kr/Xe \text{ of } 5 \times 10^{-15} \text{ (ppq)}$
 - Offgas: 0.1 % of input with $^{nat}Kr/Xe$ of 5 × 10⁻⁹ (ppb)
 - (Column: 1200 Reflux with 9 stages)

Concentrator column was built and is currently being characterized using ^{83m}Kr. First results look good!

Daniel Wenz

Daniel Wenz

High flow radon removal system

- Small scale demonstrator to study technical challenges (flow: 4 kg/h equivalent column)
 - Designed to deliver up to 130 W of cooling and heating power
 - First test concluded successful (paper under preparation)

High flow radon removal system

- Small scale demonstrator to study technical challenges (flow: 4 kg/h equivalent column)
 - Designed to deliver up to 130 W of cooling and heating power
 - First test concluded successful (paper under preparation)
- Next step:
 - Scale technology by a factor x15 to 70 kg/h (2 kW to 3 kW of cooling/heating power)
 - Fully integrated into a XENONnT sized Rn distillation column at Münster
 - Rn concentration monitor
 - Make first design choices towards optimization:
 - More efficient compressor
 - Reduce flow loss through compressor bypass

Daniel Wenz

Compact purification and monitoring:

- Demonstrator for a compact all-in-one purification, distillation and monitoring unit.
 - LXe detector volume instrument with light sensors for monitoring
 - Includes GXe/LXe purification for electronegative impurities
 - Various calibration sources to study performance of subsystems
 - Neutron shielding design study to mitigate ¹³⁷Xe
 - A test facility for high-flow LXe distribution and low maintenance LXe pumps

Please let us know if you would like to contribute!

Compact purification and monitoring:

- Space requirement:
 - Krypton removal system (height ~5.5 m)
 - (XENONnT sized Rn column) + concentrator column: 0.7 m² + 0.7 m²
 - (XENONnT sized compressor for heatpump): 0.7 m²
 - Rn column (height ~4 m):
 - XENONnT sized Rn column sized by flux: $15 \cdot 0.7 \text{ m}^2 = 10.5 \text{ m}^2$
 - Compressor sized by flux: $15 \cdot 0.7 \text{ m}^2 = 10.5 \text{ m}^2$
 - Additional infrastructure:
 - GXe/LXe purification, LXe monitor, etc. +??? m²
- Electrical power requirement:
 - Goal: less than 100 kW
 - Using large efficient turbine compressors

about 6 x 6 x 6 m³ (+ 0.5 m of PE neutron shield)

Conclusion

- Develop technologies for:
 - Continuous/online ⁸⁵Kr removal (30 ppq ^{nat}Kr), enable high statistics ³⁷Ar calibration ۲

Students

- Another factor 6 in active ²²²Rn reduction towards 0.1 µBq/kg .
- Online concentration monitoring
- Design of a combined and compact **purification & distillation** unit (75 kg/h)
- Other LowRad R&D at Münster not shown today: •
 - Computing tools for the design of cryogenic distillation and heat pumps ۲
 - Kr- and Rn-decay monitoring systems •
 - Ultra clean gas and liquid xenon pumps ۲
 - Xenon gas purity monitoring systems

ā

DFG

erc

