Requirements from $0\nu\beta\beta$

XLZD Collaboration Meeting

Alex Lindote, July 1 2025

- What is a reasonable main scientific requirement?
 - Should be science driven and lead to an interesting result for the community
 - Should imply reasonably achievable secondary requirements (backgrounds, performance, size, etc.)
- Set in half-life or effective Majorana mass?
 - Our sensitivity is set on the half-life, direct comparison with other ¹³⁶Xe experiments
 - But it should have a connection to $m_{\beta\beta}$ for comparison with other isotopes and to frame it in the overall $0\nu\beta\beta$ landscape
 - This implies a dependency on nuclear models (and iterations of these models)
 - "Standard" NMEs range 1.11 4.77 (note that higher is *better*)
 - Updated models include an additional short range term and a quenched g_A
 - Overall, a wider interval (0.98 5.49)

Suggestion: use a 90% CL exclusion $T_{1/2} > 7x10^{27}$ yr as our requirement

- 1. >10x higher than current best limits for ¹³⁶Xe (3.8x10²⁶ yr, from KL-Zen)
- Higher than the PandaX-xT best sensitivity (for a very optimistic scenario), meaning we would be world leaders in ¹³⁶Xe
 - Pending future of nEXO 2.0
- 3. Within the reach of a 60 t detector for the range of scenarios tested

Suggestion: use a 90% CL exclusion $T_{1/2} > 7 \times 10^{27}$ yr as our requirement

- 1. >10x higher than current best limits for 136 Xe (3.8x10²⁶ yr, from KL-Zen)
- Higher than the PandaX-xT best sensitivity (for a very optimistic scenario), meaning we would be world leaders in ¹³⁶Xe (nEXO 2.0?)
- 3. Within the reach of a 60 t detector for the range of scenarios tested
- 4. Allows us to beat LEGEND-1000 90% CL exclusion

Comparison with other experiments

- 7x10²⁷ yr is enough to put us in the lead in the 90% CL exclusion metric
 - ¹³⁶Xe has a wider range of NMEs compared with ⁷⁶Ge and ¹³⁰Te)
 - $G^{0\nu}$ helps us here (6x higher than for ⁷⁶Ge)

Suggestion: use a 90% CL exclusion $T_{1/2} > 7x10^{27}$ yr as our requirement

- 1. >10x higher than current best limits for 136 Xe (3.8x10²⁶ yr, from KL-Zen)
- Higher than the PandaX-xT best sensitivity (for a very optimistic scenario), meaning we would be world leaders in ¹³⁶Xe (nEXO 2.0?)
- 3. Within the reach of a 60 t detector for the range of scenarios tested
- 4. Allows us to beat LEGEND-1000 90% CL exclusion
- 5. It completely excludes the IO region for a range of updated QRPA models

Bonus: It's equivalent to the 3×10^{27} yr 3σ discovery potential requirement used in the site selection report

Secondary requirements

Use the main science requirements to study the range of compatible background levels and detector performance parameters, set secondary requirements

- HE γ -ray background
- ²²²Rn level (and/or BiPo tagging efficiency)
- Energy resolution
- SS/MS discrimination
- ¹³⁷Xe (laboratory depth)

Note: these requirements can be softened once we use a PLR for the sensitivity estimate – or conversely, we can maintain them and improve the science requirement

γ -ray background requirement

Focusing on 90% CL, 10 yr exposure

- Band width shows the impact of the remaining parameters between scenarios
- Some wiggle room for the γ-ray requirement (with optimistic assumptions for other parameters)
- Installation lab depth crucial to set the γ-ray requirement limits
 - 10 19 % at LNGS
 - \circ 15 27 % at Boulby
 - 18 35 % at SURF
 - 21 41 % at SNOLab

	Scenario		
Parameter	Nominal Optin		
²²² Rn concentration [µBq/kg]	0.1		
BiPo tagging efficiency [%]	99.95	99.99	
External γ -ray [% LZ]	N/A		
Installation site	LNGS	SURF	
Energy resolution [%]	0.65	0.60	
SS/MS vert. separation [mm]	3	2	

²²²Rn level requirement

	Scenario		
Parameter	Nominal	Optimistic	
²²² Rn concentration [µBq/kg] BiPo tagging efficiency [%]	N/A		
External γ -ray [% LZ]	25	10	
Installation site	LNGS	SURF	
Energy resolution [%]	0.65	0.60	
SS/MS vert. separation [mm]	3	2	

- Testing [0.0079, 0.05395, 0.1, 0.355, 0.61] μBq/kg
 - Using expected BiPo tagging efficiency of 99.98%
 - \circ Can be interpreted as varying BiPo efficiency for the nominal 0.1 $\mu Bq/kg$
- Little dependency below
 0.1 µBq/kg (above 99.98%)
- Could accommodate
 0.355 μBq/kg with 24% LZ γs
 (17% for 0.6 μBq/kg) and
 installation at SURF

Energy resolution requirement

- From studies in LZ we know we can achieve a similar energy resolution for a range of drift fields (~0.67% in the WS2022/WS2024 range, 97–193 V/cm)
- Light collection will affect the resolution (needs detailed study), so a requirement needs to be set there

10

	Scenario		
Parameter	Nominal	Optimistic	
²²² Rn concentration [µBq/kg]	0.1		
BiPo tagging efficiency [%]	99.95	99.99	
External γ -ray [% LZ]	25	10	
Installation site	LNGS	SURF	
Energy resolution [%]	N/A		
SS/MS vert. separation [mm]	3	2	

Energy resolution requirement

- Varied E_{res} between very optimistic 0.5% and conservative 1%
- Weak dependency (especially for worst resolutions)
- Could accommodate 0.75% with 26% LZ γs (22% for 0.85%) and installation at SURF

Requirements scenarios

Many possible combinations, requirements depend on installation lab.

A lower external γ -ray level can compensate for poorer performance in other parameters

Table shows a few examples

222Rn [µBq/kg]	Eres [%]	SS/MS [mm]	Lab	γ-ray [% LZ]
			LNGS	12
0.1	0.1 0.65 3		Boulby	18
0.1		0.1 0.05	SURF	23
				SNOLab
0.1	0.6	2	Boulby	26
0.355	0.75	3	SNOLab 15	

A more ambitious $0\nu\beta\beta$ science requirement

A 90% CL exclusion $T_{1/2} > 1 \times 10^{28} \text{ yr}$

- Requires an 80 t detector
- World leadership in 3σ discovery potential
- Achievable with similar BG and performance requirements
- Allows us to reach more ambitious science goals
 - Probe lower $m_{\beta\beta}$ regions if an hint of a signal is observed (longer run and/or some enrichment)
 - Fully exclude IO (some enrichment required)

Some thoughts

- A 90% CL half-life exclusion of 7x10²⁷ yr requirement is
 - Competitive (may be world leading) for ¹³⁶Xe based experiments
 - Competitive (may be world leading) in excluding effective Majorana mass region across planned experiments
 - Achievable with a 60 t TPC and reasonable (?) requirements
- We need full simulations to properly set requirements
- Requirements obtained with the FoM estimator are too stringent and can be relaxed once we have a PLR (or the main requirement improved)
- Main dependency is with the external gammas, with the requirement strongly depending on the installation laboratory
 - This model focuses mainly on ²¹⁴Bi, but skin and OD thresholds will be crucial to keep ²⁰⁸Tl at a manageable level
- Weaker dependency with other parameters which can be compensated by the γ level requirement
- We can (should) explore other parameters that may help relax requirements (e.g. SS/MS discrimination in xy)
- An 80 t detector with similar requirements gives us world leadership in discovery sensitivity and allows us to reach more ambitious science goals

References

- XLZD 0vbb sensitivity paper studies on <u>github</u>
- XLZD 0vbb requirements code on github
- Modified LZ γ background model (Excel file)

Recap of the sensitivity paper

Main backgrounds

- HE gammas from ²³⁸U (²¹⁴Bi) and ²³²Th (²⁰⁸Tl)
- ⁸B neutrinos (irreducible)
- ¹³⁶Xe $2\nu\beta\beta$ decay continuum
- ²²²Rn (²¹⁴Bi "naked" beta)
- ¹³⁷Xe (neutron activation, cosmogenic component depends on installation lab)

Important performance parameters

- Energy resolution
- SS/MS discrimination

Recap of the sensitivity paper – Performance parameters

- Based on proven performance in LZ/XENON
- Energy resolution
 - \circ 0.67% demonstrated in LZ with α -based corrections is SR1
 - Similar resolution in WS2024 with lower drift field (preliminary)
 - Assumed 0.65% (0.6%) for XLZD

Recap of the sensitivity paper – Performance parameters

- Based on proven performance in LZ/XENON
- Energy resolution (**0.65/0.6 %**)
- SS/MS discrimination
 - Only explored vertical separation
 - S2 double gaussian fits point to <2 mm in LZ WS2022
 - Other algorithms being explored
 - Assumed 3 mm (2 mm) for XLZD
 - 85% signal efficiency
 - Excludes 90% HE γ in ROI
 - Rejects 23% of single e⁻ BG

- HE gammas from ²³⁸U (²¹⁴Bi) and ²³²Th (²⁰⁸Tl)
 - Cavern rock gammas reduced to negligible level
 - Simulation work from Jemima and Vitaly
 - Requires a minimum shielding of 4 m w.e.
 (water + organic scintillator + steel on the bottom)

	Norma	alised to Boulby asurements	
	0 - 20 keV	0 - 100 keV	2408 - 2508 keV
Isotope	Rate [year ⁻¹]	Rate [year ⁻¹]	Rate [year ⁻¹]
$^{232}\mathrm{Th}$	$\left(7.2^{+8.2}_{-4.6}\right)\times10^{-5}$	$\left(2.9^{+1.1}_{-0.9}\right)\times10^{-4}$	0.057 ± 0.014
$^{238}\mathrm{U}$	$0^{+0.00027}_{-0}$	$\left(2.3^{+2.5}_{-0.8}\right)\times10^{-4}$	0.071 ± 0.003
40 K	$0^{+0.1}_{-0}$	$0^{+0.1}_{-0}$	n/a

63 t FV (71 t TPC)		
$Q_{\beta\beta} \pm 50 \text{ keV}$		
σ_Z < 0.5 cm, σ_R < 5 cm		

- HE gammas from ²³⁸U (²¹⁴Bi) and ²³²Th (²⁰⁸Tl)
 - Detector materials
 - Skin + OD are very efficient at vetoing ²⁰⁸TI gammas
 - Coincident gammas, Compton scatters
 - Assumed a **100 keV threshold** in both skin and OD

- HE gammas from ²³⁸U (²¹⁴Bi) and ²³²Th (²⁰⁸Tl)
 - Detector materials
 - Gammas are highly attenuated (~8 cm Compton s.l., 3 m detector)
 - SS rate decreases several orders of magnitude in the central region

- HE gammas from ²³⁸U (²¹⁴Bi) and ²³²Th (²⁰⁸TI)
 - **Detector materials** 0
 - Assumed various material radioactivity optimisations in LZ model (²³⁸U only)
 - New 3" PMTs with ¹/₃ of U_{late}
 - Custom made field shaping rings
 - Cleaner capacitors in PMT bases
 - Clean copper in PMT cables
 - Low radioactivity PMTs in the skin
 - Avoid water displacer foams
 - Use clean (identified) batches of SST, PTFE, copper, Kovar and Kapton
 - Overall, this results in a 75% reduction of the LZ²¹⁴Bi gamma background in the ROI

Clean materials and subsystem radioactivity

Cleanest material batches in LZ and XENON radioassay campaigns

Values shown are average for each subsystem after mitigation assumptions (25% initial LZ)

Material	U _{late} (mBq/kg)	Source
Titanium	<0.04	LZ (66)
SST	0.27	LZ (54)
PTFE	<0.02	LZ (138)
Copper	<0.04	XENON (#1)
PEEK	4.0	LZ (447)
Kovar	<0.63	LZ (131)
Kapton	<4.6	LZ (1035)
Aluminium (SI)	1.13	GERDA (#11)
PTFE (SI)	0.34	GERDA (#11)

Subsystem	<u<sub>late> (mBq/kg)</u<sub>	U _{late} (mBq)	Reduction (%)
3" PMTs	1.07	98.8	67
Cryostat	0.05	139	35
PMT structures	0.65 / 0.16	35.2 / 18.6	81
Field rings	0.1	9.1	58
3" bases	19.4	54.2	74
Cryostat seals	3.17	176	0
OD tanks	0.06	198	38
TPC sensors	0.94	4.40	88
PMT cables	4.16	369	84 24

- ⁸B neutrinos (irreducible)
 - Not much we can do about this one, but the 3 mm vertical SS/MS discrimination helps
- ¹³⁶Xe $2\nu\beta\beta$ decay continuum
 - Negligible for the assumed energy resolution
- ²²²Rn (²¹⁴Bi "naked" beta)
 - \circ Assumed 0.1 $\mu Bq/kg$
 - ~20% of decays are naked beta (3270 keV end point)
 - \circ Daughter ^{214}Po has a 162.3 μs half-life, α decay
 - A 290 V/cm drift field requires a minimum of 2 ms long waveforms (for 60 t, 3 m height)
 - 99.98% of BiPo decays contained
 - A lower field and/or 80 t (4 m) TPC has even higher efficiency
 - In the paper we assumed 99.95% (99.99%)

- ¹³⁷Xe (neutron activation of ¹³⁶Xe)
 - Short half-life (3.82 min), 67% of decays by naked beta (4173 keV end point)
 - Activation by environment neutrons for xenon outside the water tank
 - Requires local shielding around Xe circulation and Rn removal system (needs a detailed study)
 - Can also be minimised with 'decay tanks' inside the water tank
 - Assumed negligible in the paper
 - Cosmogenic activation
 - Depends on muon flux, thus on the installation lab
 - Some vetoing may be possible:
 - Using the muon (large dead time)
 - Looking for the ¹³⁶Xe capture (difficult as it immediately follows the muon signal)
 - In the paper we assumed no vetoing
 - But use the 23% SS/MS discrimination

	D	epth	μ flux	¹³⁷ Xe rate	SS ROI rate
Site	[m]	[m w.e.]	$[/(m^2 \cdot d)]$	$[/(t \cdot yr)]$	$[\rm evt/(t{\cdot}\rm yr{\cdot}\rm keV)]$
SNOLAB	2070	5890	< 0.3	0.007	1.29×10^{-6}
SURF	1490	4300	4.6	0.142	2.72×10^{-5}
Boulby	1300	3330	14.6	0.404	7.73×10^{-5}
LNGS	1400	3800	29.7	0.822	1.57×10^{-4}
Kamioka	1000	2700	128	3.54	6.78×10^{-4}

Recap of the sensitivity paper – BG model

- Background model using the nominal scenario in a 60 t detector
- Selected fiducial volume with similar internal and external backgrounds

	Scenario		
Parameter	Nominal	Optimistic	
222 Rn concentration [μ Bq/kg]	0.1		
BiPo tagging efficiency [%]	99.95	99.99	
External γ -ray [% LZ]	25	10	
Installation site	LNGS	SURF	
Energy resolution [%]	0.65	0.60	
SS/MS vert. separation [mm]	3	2	

Recap of the sensitivity paper – Sensitivity

• Sensitivity estimates using figure-of-merit

$$T_{1/2}^{0\nu} = \ln 2 \frac{N_A \mathcal{E}}{M_{\rm Xe} S(B)}$$

Effective Majorana mass sensitivity

- Translating decay half-life sensitivity to effective Majorana mass requires knowledge of the Nuclear Matrix Element (NME)
- Multiple nuclear models, and multiple variants/updates of these models
- Here we used 'classical' models, which don't include recent developments (g_A quenching and short range term)
- The NME range [1.11, 4.77] leads to the observed bands in $m_{\beta\beta}$
- Bands shown here are for an 80 t TPC

Enrichment scenarios

"Classical" Nuclear Matrix Elements

From Agostini M. et al., <u>Rev. Mod. Phys. 95, 025002</u> (2023), arXiv:2202.01787

TABLE I. NMEs $M^{0\nu}$ for light-neutrino exchange calculated with the shell model, QRPA, EDF theory, and IBM methods for the $0\nu\beta\beta$ decay of nuclei considered for next-generation experiments. The combined NME range for each many-body method is also shown. All NMEs were obtained with the bare value of g_A and do not include the short-range term proportional to g_{μ}^{NN} .

	Reference	⁷⁶ Ge	⁸² Se	¹⁰⁰ Mo	¹³⁰ Te	¹³⁶ Xe
Shell model	Menéndez (2018)	2.89, 3.07	2.73, 2.90		2.76, 2.96	2.28, 2.45
	Horoi and Neacsu (2016b)	3.37, 3.57	3.19, 3.39		1.79, 1.93	1.63, 1.76
	Coraggio et al. (2020, 2022)	2.66	2.72	2.24	3.16	2.39
	min-max	2.66-3.57	2.72-3.39	2.24	1.79-3.16	1.63-2.45
QRPA	Mustonen and Engel (2013)	5.09			1.37	1.55
	Hyvarinen and Suhonen (2015)	5.26	3.73	3.90	4.00	2.91
	Šimkovic, Smetana, and Vogel (2018)	4.85	4.61	5.87	4.67	2.72
	Fang, Faessler, and Šimkovic (2018)	3.12, 3.40	2.86, 3.13		2.90, 3.22	1.11, 1.18
	Terasaki (2020)				4.05	3.38
	min-max	3.12-5.26	2.86-4.61	3.90-5.87	1.37-4.67	1.11-3.38
EDF theory	Rodriguez and Martinez-Pinedo (2010)	4.60	4.22	5.08	5.13	4.20
-	López Vaquero, Rodríguez, and Egido (2013)	5.55	4.67	6.59	6.41	4.77
	Song et al. (2017)	6.04	5.30	6.48	4.89	4.24
	min-max	4.60-6.04	4.22-5.30	5.08-6.59	4.89-6.41	4.20-4.77
IBM	Barea, Kotila, and Iachello (2015a) ^a	5.14	4.19	3.84	3.96	3.25
	Deppisch et al. (2020)	6.34	5.21	5.08	4.15	3.40
	min-max	5.14-6.34	4.19-5.21	3.84-5.08	3.96-4.15	3.25-3.40

^aWith the sign change in the tensor part indicated by Deppisch et al. (2020).

Deadtime model

 Shows effect of PMT 'blindness' following muon events and a possible muon veto for ¹³⁷Xe decays – assumes a 3 m diameter TPC at Boulby 1300 m

	Scenario		
Parameter	Nominal	Optimistic	
²²² Rn concentration [µBq/kg]	0.1		
BiPo tagging efficiency [%]	99.95	99.99	
External γ -ray [% LZ]	25	10	
Installation site	LNGS	SURF	
Energy resolution [%]	0.65	0.60	
SS/MS vert. separation [mm]	3	2	

γ -ray background requirement

- Until we have a full simulation this requirement is expressed as a fraction of the LZ background
 - Can be converted to ²³⁸U activities assuming LZ geometry and paper baseline scenario
 - Example curves use **nominal** scenario and **60 t** detector
 - Gray band shows the paper nominal and optimistic γ -ray scenarios
 - Included a 15 yr scenario just to have an idea of how exposure can be used to soften other requirements
 - Curves for 3σ discovery potential show it's harder to have a competitive science requirement in this metric with a 60 t detector

γ -ray background requirement

Focusing on 90% CL, 10 yr exposure

- Band widths show the impact of the remaining parameters between scenarios
- 80 t detector can comfortably reach R1; R2 impossible with 60 t
- Some wiggle room for the γ-ray requirement (with optimistic assumptions for other parameters)
- Installation lab depth crucial to set the γ -ray requirement limits, e.g. for 60t R1
 - 10 19 % at LNGS
 - 15 27 % at Boulby
 - 18 35 % at SURF
 - $\circ~~21-41$ % at SNOLab

	Scenario	
Parameter	Nominal	Optimistic
²²² Rn concentration [µBq/kg]	0.1	
BiPo tagging efficiency [%]	99.95	99.99
External γ -ray [% LZ]	N/A	
Installation site	LNGS	SURF
Energy resolution [%]	0.65	0.60
SS/MS vert. separation [mm]	3	2

²²²Rn level requirement

	Scenario	
Parameter	Nominal	Optimistic
²²² Rn concentration [µBq/kg] BiPo tagging efficiency [%]	N/A	
External γ-ray [% LZ]	25	10
Installation site	LNGS	SURF
Energy resolution [%]	0.65	0.60
SS/MS vert. separation [mm]	3	2

- Testing [0.0079, 0.05395, 0.1, 0.355, 0.61] μBq/kg
 - Using expected BiPo tagging efficiency of 99.98%
 - \circ Can be interpreted as varying BiPo efficiency for the nominal 0.1 $\mu Bq/kg$
- Little dependency below
 0.1 µBq/kg (above 99.98%)
- Could accommodate higher
 ²²²Rn levels with stricter γ BG:
 - e.g. 0.355 μBq/kg with
 24% LZ γs in 60 t for R1

