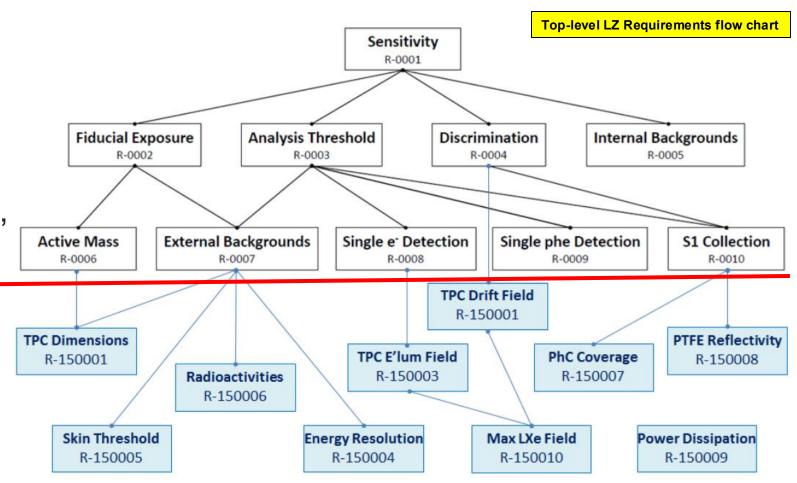
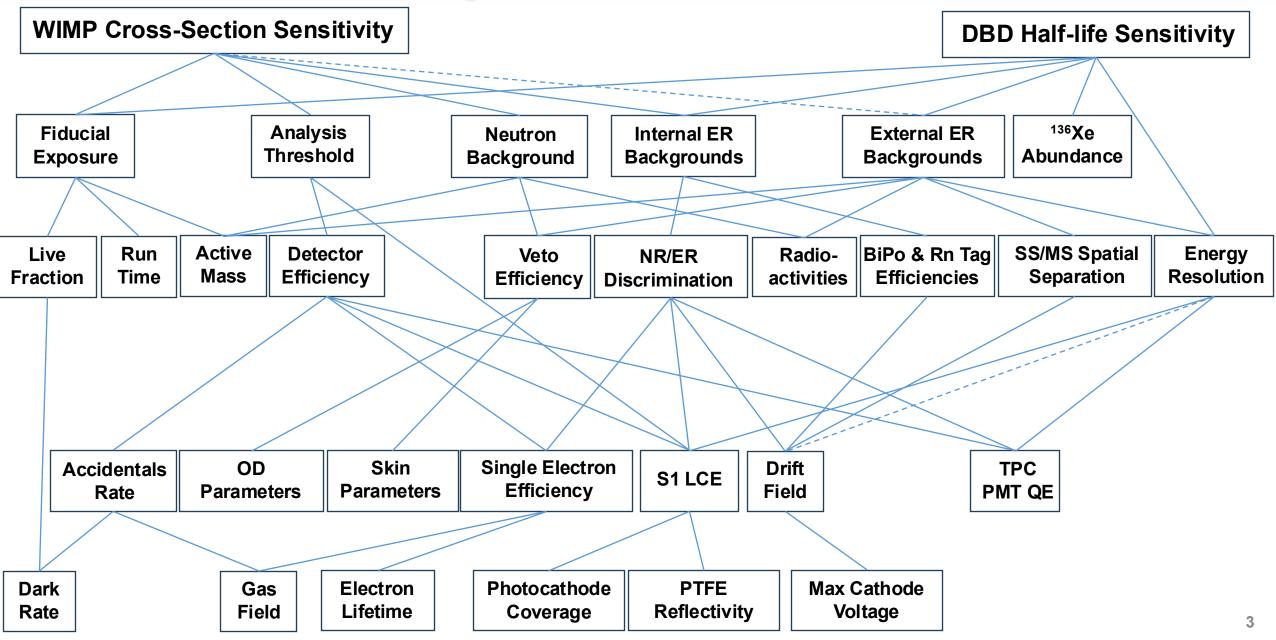




# Requirements Task Force Report


#### Dan Tovey,

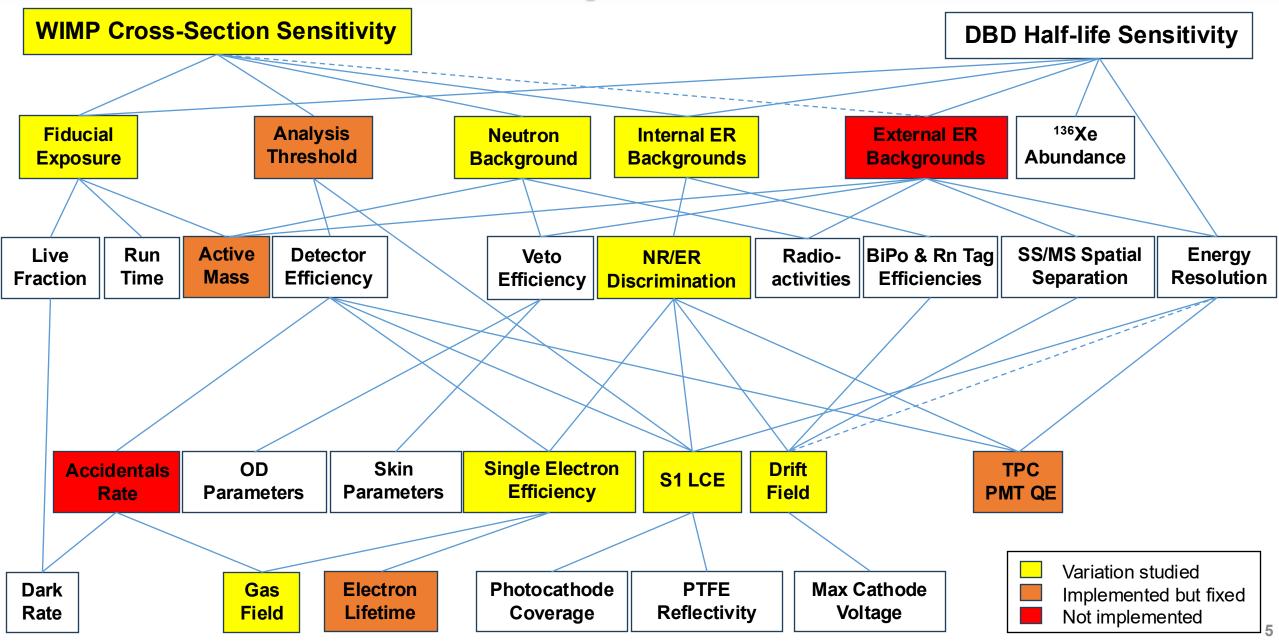
#### on behalf of the Requirements TF:


Amy Cottle, <u>Maike Doerenkamp</u>, <u>Rob James</u>, Asher Kaboth, Alvine Kamaha, <u>Alex Lindote</u>, Hugh Lippincott, Teresa Marodan, <u>Rory Matheson</u>, <u>Knut Mora</u>, <u>Jo Orpwood</u>, Tina Pollmann, Marc Schumann

# Charge

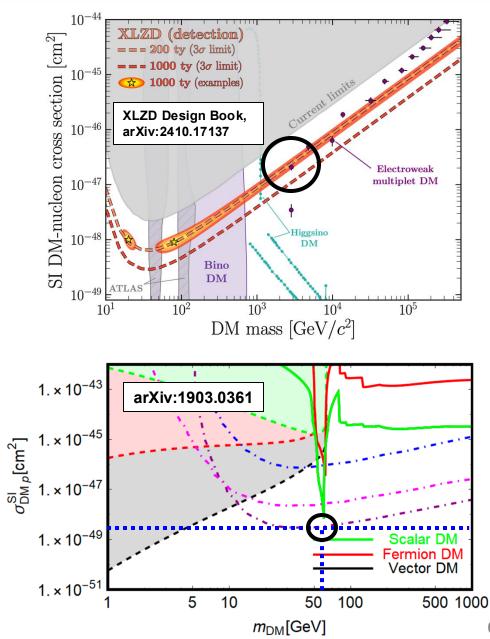
- The brief is to develop the upper-level requirements for XLZD to capture the science case(s) accurately and flow these down to main experimental parameters (mass, thresholds, background,  $\dots$ ) – but excluding the technical requirements that apply to the detector subsystems.
- Define *requirements* but not necessarily *goals*
- Should be ambitious, yet achievable




### **Draft Requirements Flowdown**

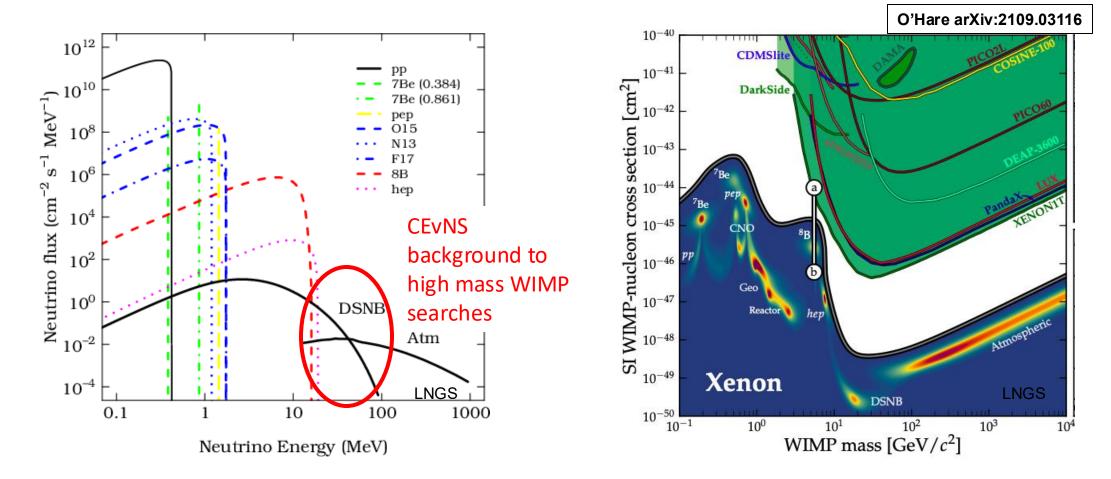


# **WIMP Search**


- Focus on observation/discovery at 5 sigma significance of key benchmark WIMP models
- Aim for experiment to be dominated by irreducible 'physics' backgrounds:
  - Neutrino CEvNS (mostly atmospheric, +DSNB) for NR background
  - Solar neutrino (mostly <sup>8</sup>B) for ER background
- Implies constraints on dominant reducible backgrounds
  - Neutron induced NR backgrounds → quote as fraction of Neutrino CEvNS rate above threshold
  - <sup>214</sup>Pb and <sup>85</sup>Kr ER backgrounds (compare also with CEvNS NR rate after ER/NR discrimination)
- Aim to set requirements on performance parameters that avoid 'cliff-edge' degradation
- Requirements coherent (where relevant) with  $0\nu\beta\beta$  requirements
- In practice input parameters defined by what can easily be varied in FlameNEST

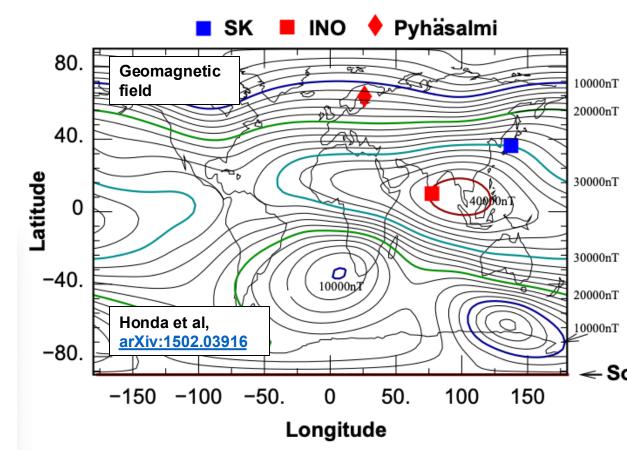
### **WIMP Search Requirements Flowdown**




# WIMP Search Science Requirements

- Possible Requirement:  $5\sigma$  observation of majorana triplet model with m<sub> $\chi$ </sub>=2800 GeV,  $\sigma$ ~2x10<sup>-47</sup> cm<sup>2</sup>.
  - Rationale: Would allow 5 sigma discovery of many other EW multiplet benchmark points.
  - NB: not all EW multiplet models accessible to XLZD, due to neutrino floor
- Possible Requirement: Exclude at 90% CL model with  $\sigma$ =2x10<sup>-49</sup> cm<sup>2</sup> and m<sub> $\chi$ </sub>=60 GeV
  - Rationale: Would exclude majority of Higgs portal DM models. Higgs portal models most challenging at  $m_{\chi}$ ~ $m_{H}/2$ ~60 GeV. Complementary to LHC invisible Higgs searches these lose sensitivity at ~60 GeV.
  - NB: detailed studies by Arcadi et al. suggest Higgs portal minimum is lower ~6.7x10<sup>-50</sup> cm<sup>2</sup>. Unlikely to be excludable …
- Aim to study low mass  $m_{\chi}$ =10 GeV point, however this requires an accidentals model



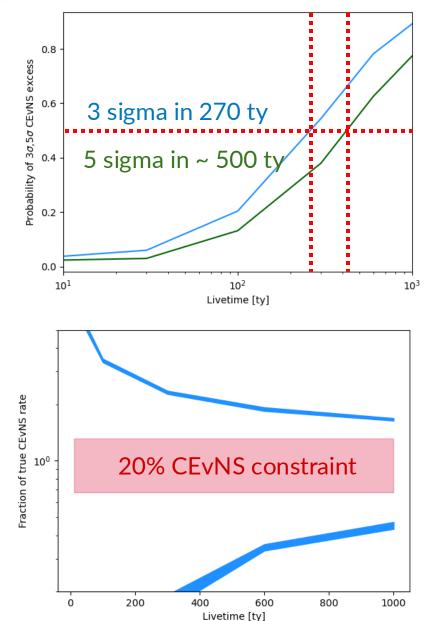

## **Neutrino CEvNS Background**

- Atmospheric neutrino + DSNB CEvNS is likely to be the dominant background to the high mass (m > 40 GeV) WIMP search
- Shape of nuclear recoil energy spectrum is very similar to a high mass WIMP NR signal → ~irreducible background



# What is the Atmospheric Neutrino Flux?

- Flux (and spectrum?) is site dependent
  - Systematic uncertainty canonically ~20%
- Calculations of angle-integrated all-flavour fluxes performed by Honda et al.
  - Only single bin for E < 100 MeV.
- Variation in flux ~ 1.4 (2.6) between LNGS (JUNO~CJPL) and SNOLAB/SURF/Boulby
- Updated calculation of flux and spectrum using Bartol model by Barr and Yang (Oxford) underway




Solar max flux ((m^2 sec sr GeV)^-1) Site Solar min flux ((m^2 sec sr GeV)^-1) NuMubar NuMu NuE NuEbar Total Ratio to JUNO NuMu NuMubar NuE NuEbar Total Ratio to JUNO Kamioka 7.43E+03 7.56E+03 3.54E+03 3.55E+03 2.21E+04 1.28 8.00E+03 8.14E+03 3.84E+03 3.80E+03 2.38E+04 1.29 LNGS 1.04E+04 1.06E+04 4.98E+03 4.93E+03 3.09E+04 1.79 1.15E+04 1.17E+04 5.54E+03 5.40E+03 3.41E+04 1.86 SNOLAB 1.42E+04 1.44E+04 6.90E+03 6.58E+03 4.21E+04 1.68E+04 1.70E+04 8.30E+03 7.65E+03 4.98E+04 2.44 2.71 2.69 SURF 1.41E+04 1.43E+04 6.86E+03 6.57E+03 4.19E+04 2.43 1.67E+04 1.69E+04 8.22E+03 7.61E+03 4.94E+04 5.90E+03 1.72E+04 1.00 1.84E+04 1.00 JUNO 5.79E+03 2.77E+03 2.77E+03 6.18E+03 6.29E+03 2.98E+03 2.94E+03

# **Neutrino Fog**

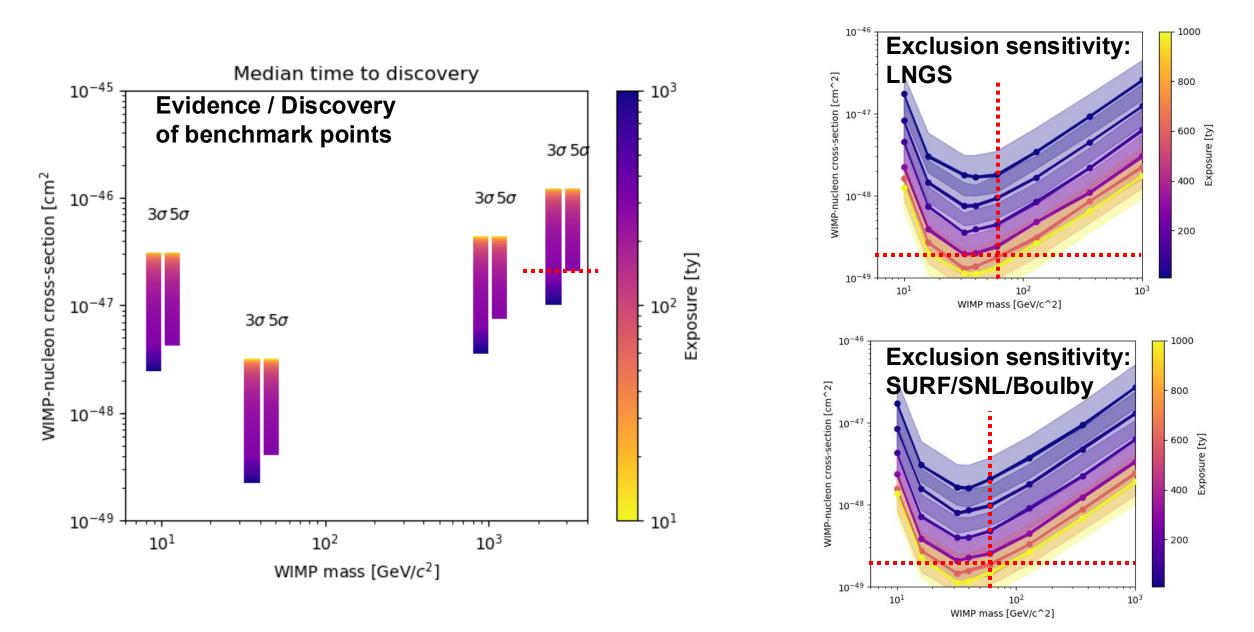
#### • Two definitions:

- Exposure at which become sensitive (3σ) to atmospheric nu CEvNS signal (*neutrino fog*)
- Exposure at which stat uncertainty on total background equals syst uncertainty, from 20% uncertainty on atmos nu CEvNS background (systematics dominated).
- XLZD will probably enter the *neutrino* fog after a ~300 tonne-years of exposure
- XLZD will not be *systematics dominated* for any likely exposure at any site.

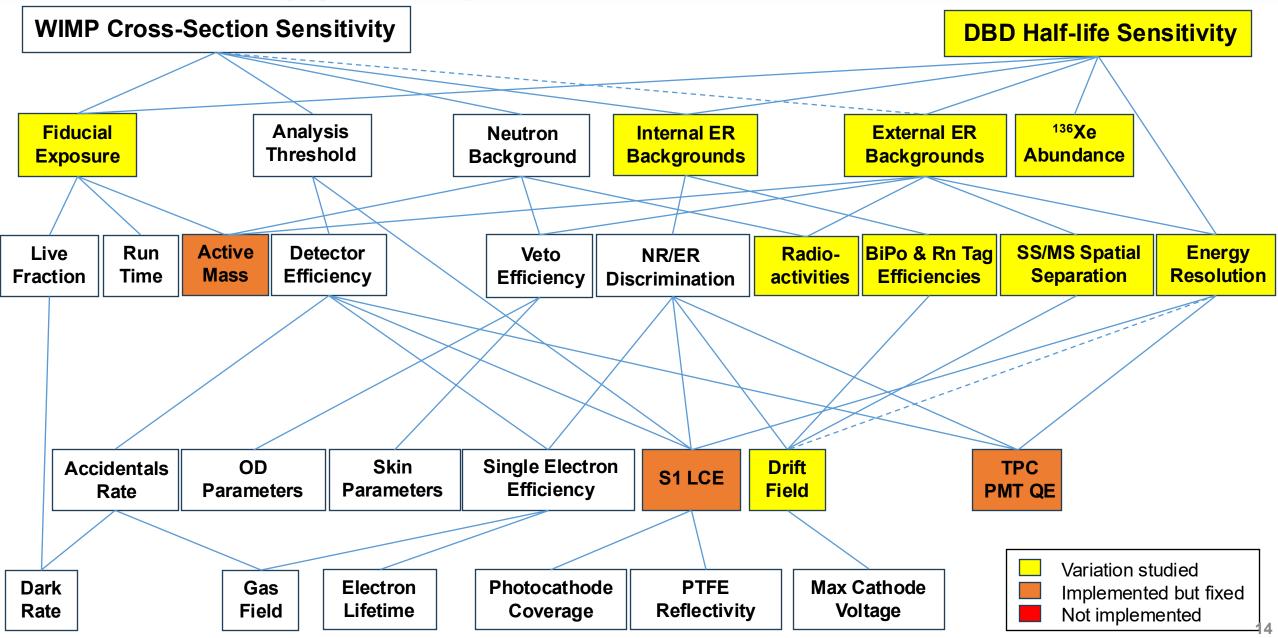


# **Proposed WIMP Search Requirements**

- Compare NR with CEvNS: 0.046 (0.061) cnts / t-y at LNGS (Boulby/SNL/SURF)
- Compare ER with solar ER: 24.4 cnts / t-y  $(2.5 < \log_{10}(cS2[phe]) < 5)$ 
  - For comparison, 0.1  $\mu$ Bq/kg Pb-214 corresponds to 3.4 cnts / t-y in same range.
  - Corresponds to 0.017 NR-band cnts / t-y for 0.5% ER/NR leakage.
  - Compare with 0.023 (0.031) CEvNS cnts / t-y at LNGS (Boulby/SNL/SURF) for 50% NR acceptance
- Backgrounds taken into account but fixed in fit:
  - Solar ER, atmos+DSNB CEvNS, Xe-124 DEC, Xe-136  $2\nu\beta\beta$
- Detector performance parameters fixed in fit:
  - PMT QE, analysis threshold, electron lifetime, fiducial mass
- Not taken into account:
  - Accidental backgrounds
  - External ER / Compton backgrounds
- More details in talks by Rob James and Knut Mora that follow


### **Preliminary Draft WIMP Search Requirements**

| Parameter                                                            | Units           | Proposed<br>Requirement | Comment                                                                    |  |
|----------------------------------------------------------------------|-----------------|-------------------------|----------------------------------------------------------------------------|--|
| WIMP cross-section 5 $\sigma$ sensitivity at 2800 GeV/c <sup>2</sup> | cm <sup>2</sup> | < 2x10 <sup>-47</sup>   | Observation of Majorana triplet model and higher mass EW multiplet models  |  |
| WIMP cross-section 90% exclusion at 60 GeV/c <sup>2</sup>            | cm <sup>2</sup> | < 2x10 <sup>-49</sup>   | 10 <sup>-49</sup> Exclusion of majority of Higgs portal models             |  |
| Fiducial exposure                                                    | t-y             | > 500 - 650             | 50 Range corresponds to LNGS – Boulby/SNL/SURF                             |  |
| Analysis threshold                                                   | ре              | <= 4                    | i.e. no worse than a 4-fold coincidence requirement. FIXED                 |  |
| Neutron NR background                                                | cnts/t-y        | < 0.0046-<br>0.0064     | Aim for rate <10% of CEvNS NR. Range corresponds to LNGS – Boulby/SNL/SURF |  |
| Pb-214 activity                                                      | μBq/kg          | < 0.1                   | Aim for rate < solar ER (and < CEvNS NR after discrimination)              |  |
| Kr-85 concentration                                                  | ppt             | < 0.1                   | Aim for rate < solar ER (and < CEvNS NR after discrimination)              |  |
| Active mass                                                          | tonne           | > 60                    | FIXED                                                                      |  |
| ER leakage @50% NR acc                                               | %               | < 0.5                   |                                                                            |  |
| Single electron efficiency                                           | %               | XXX                     | TBD. Derived in FlameNEST.                                                 |  |
| LCE                                                                  | %               | > 50                    | Averaged absolute LCE                                                      |  |
| Drift field                                                          | V/cm            | > 80                    |                                                                            |  |
| TPC PMT QE                                                           | %               | > 31                    | FIXED                                                                      |  |
| Gas field                                                            | kV/cm           | > 6.75                  |                                                                            |  |
| Electron lifetime                                                    | ms              | > 10                    | FIXED                                                                      |  |
|                                                                      |                 |                         | Preliminary Draft for Discussion                                           |  |

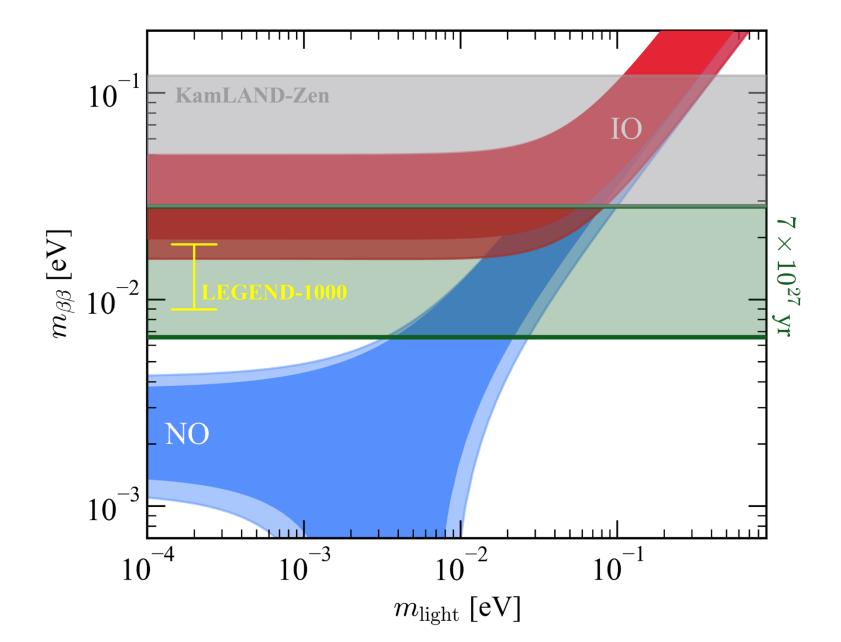

### **WIMP Search Backgrounds**

| Background                          | Counts [events / ty]         | Counts [fraction of solar $\nu$ ER] | Counts [fraction of<br>atmospheric + DSNB CEvNS @<br>LNGS, post discrimination @<br>50% NR acceptance] |
|-------------------------------------|------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------|
| Pb214                               | 3.9                          | 0.19                                | 0.83                                                                                                   |
| Kr85                                | 17.4                         | 0.84                                | 3.76                                                                                                   |
| Xe136 2vBB                          | 8.2                          | 0.40                                | 1.77                                                                                                   |
| Xe124 2vDEC                         | 3.4                          | 0.17                                | 0.73                                                                                                   |
| Solar neutrino ERs (PP + 7Be + CNO) | 20.6                         | 1.00                                | 4.45                                                                                                   |
| CEvNS (B8 + hep)                    | 0.93                         |                                     | 20.2                                                                                                   |
| CEvNS (atmospheric + DSNB)          | 0.046 @ LNGS<br>0.064 @ SURF |                                     | 1.00 @ LNGS<br>1.39 @ SURF                                                                             |
| Neutrons                            | 0.0046                       |                                     | 0.10                                                                                                   |

### **WIMP Search Performance**



### νββ Requirements Flowdown

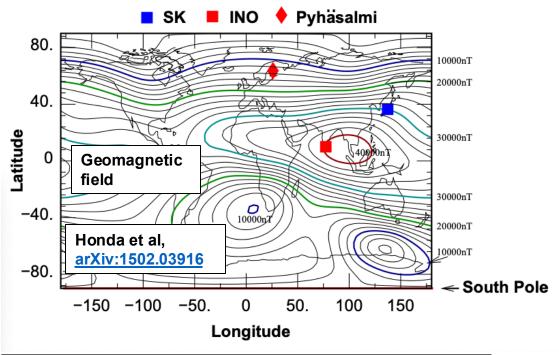


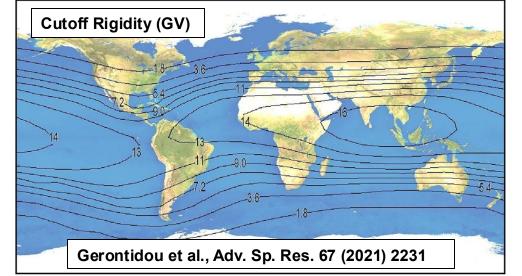

# **Preliminary Draft 0νββ Search Requirements**

- Starting from studies from XLZD  $0\nu\beta\beta$  paper (arXiv:2410.19016)
- Aim to set top-level requirement on  $T_{1/2}$  sensitivity, rather than  $m_{\beta\beta}$ , to avoid dependence on nuclear models
- Note that a more aggressive goal might be achievable with 80 t + enrichment
- More details in talk from Alex Lindote yesterday

| Parameter                                            | Units  | Proposed requirement | Comment                                                                                                          |
|------------------------------------------------------|--------|----------------------|------------------------------------------------------------------------------------------------------------------|
| $^{136}$ Xe $0\nu\beta\beta$ half-life 90% exclusion | years  | > 7x10 <sup>27</sup> | Ensures world leadership in $^{136}$ Xe half-life and $m_{\beta\beta}$ exclusion (pending on the future of nEXO) |
| Fiducial livetime                                    | years  | > 10                 | Assumes tighter FV cuts wrt WIMP search                                                                          |
| Pb-214 activity                                      | μBq/kg | < 0.1                | Consistent with WIMP search but probably not the driver. Assumes secular equil for <sup>214</sup> Bi.            |
| External gammas                                      | %      | < 25                 | Currently relative to LZ. Mainly Bi-214 (peaking) and TI-208 (tail). Site dependent.                             |
| <sup>136</sup> Xe abundance                          | %      | > 8.9                | Assume natural abundance. FIXED                                                                                  |
| Active mass                                          | tonne  | > 60                 | FIXED                                                                                                            |
| Bi-Po tagging efficiency                             | %      | > 99.95              | 99.95% assumed in XLZD $0\nu\beta\beta$ paper.                                                                   |
| SS/MS vertical separation                            | mm     | < 3                  | Seems robust against drift-field variation                                                                       |
| Energy resolution                                    | %      | < 0.65               |                                                                                                                  |
| LCE                                                  | %      | > 100                | Currently relative to LZ. Current assumption. FIXED                                                              |
| Drift field                                          | V/cm   | > 80                 | Consistent with WIMP search requirement                                                                          |
| TPC PMT QE                                           | %      | > 31                 | Current assumption. FIXED Preliminary Draft for Discuss                                                          |

### **Onbb Performance**





 More details in Alex Lindote's talk

# Backup

# What is the Atmospheric Neutrino Flux?

- Atmospheric neutrinos are formed in the atmosphere from primary cosmic ray spallation on nuclei
- Flux is strongly dependent on flux of primary cosmic rays reaching atmosphere.
- Depends on:
  - Time: solar maximum vs. solar minimum
  - Latitude of site: geomagnetic field shields detectors close to the equator
  - Longitude of site: geomagnetic field varies across earth's surface due to details of the geodynamo
- Can quantify degree of shielding with 'cutoff rigidity' → rigidity below which primary cosmic rays are shielded by geomagnetic field



