

Cryostat Design Studies - XLZD@Boulby Project

Liam Cooper, Pawel Majewski, on behalf of XLZD@Boulby WP3 liam.cooper@stfc.ac.uk 30/06/2025

Contents

- Cryostat Overview
- Challenges
- Cryostat Design
 - Drivers
 - Code compliance
 - Working conditions
 - Vessel sizes
 - Cryostat support
 - Reducing passive LXe
- Manufacturing
- Interfacing with Boulby
- Industrial Engagement

Cryostat Team

STFC - Rutherford Appleton Laboratory (RAL)

- Harry Byrne (Eng)
- Liam Cooper (Lead Eng)
- Anmol Goyal (Eng)
- Pawel Majewski (Lead*)
- Daniel Wells-Calvo (Eng)
- Dan Wilcox (Eng)

University of Sheffield

- Adam Brown (Physics)
- Jack Fannon (Physics)
- Steven Jones (Industry engagement)
- Paul Kemp-Russell (Welding technologies)
- Dan Tovey (Lead, Industry engagement)

Karlsruhe Institute of Technology (KIT)

- Klaus Müller (Eng)
- Adrian Schwenck (Eng)
- Kathrin Valerius (Lead)

Nikhef

• Auke-Pieter Colijn (Lead*)

*XLZD Cryostat international convener

Overview

- The cryostat comprises of two vessels, an outer cryostat vessel (OCV) and an inner cryostat vessel (ICV).
- Designed to contain a detector with an 80 T LXe target mass at -100°C.
 - Approximately 100 T of LXe inside of the ICV.
- We propose to build the largest cryostat needed, and not plan for a modular cryostat which increases its size between "early science" and final LXe-TPC stages (single flange pair per vessel).
- Both vessels will be designed and fabricated in accordance with a pressure vessel code.
- We are engaging with cryostat expertise from the LZ and XENONnT experiments.

Challenges

- Vessels to be constructed from an ultra radiopure material.
 - No decision yet on the material.
 - Most work so far assumes CP Gr.1 Ti construction.
 - Calculations also done for a 300-series stainless steel cryostat.
 - We plan to investigate use of ultra-pure nickel.
- At Boulby (or other vertical access labs), the cryostat is too large to be taken underground in one piece and <u>requires underground manufacture</u>.
 - To address this technical challenge, we are engaging with industry throughout the design stages.

Design - Code Compliance

- The cryostat vessels must be code compliant.
- We use design rules in PD5500 (UK specification) where possible.
 - For aspects not covered by rule, we demonstrate compliance using FEA (to PD5500 Annex A).
- Design procedure:
 - Define requirements & code.
 - Establish design conditions (pressures, temperatures, loads).
 - Material selection.
 - Provisional vessel layout.
 - Design checks (internal pressure calculation, external pressure calculations, load calculations).
 - Design iteration.
- Model in PVElite to check calculations.
- Calculations verified through contracts with industry.

Design - Working Conditions

- Design pressures and temperatures are based off worst case 'reasonably foreseeable' conditions.
- ICV:
 - Maximum internal pressure (a): Xe inside, vacuum outside.
 - Maximum external pressure (b): Water outside, vacuum inside.
- OCV:
 - Maximum internal pressure (c): Xe leak inside, tank empty outside.
 - Maximum external pressure (d): Water outside, vacuum inside.

Design - Vessel Sizes

Inner Vessel

- Inner diameter: 3120 mm top, 3200 mm bottom.
 - Includes conical segment to save LXe.
- Height: 5774 mm.
- Mass: 6.2 T* (if Gr.1 Ti), 7.8 T* (if 304L).
- Outer vessel
 - Inner diameter: 3550 mm.
 - Height: 6323 mm.
 - Mass: 6.1 T* (if Gr.1 Ti), 8.2 T* (if 304L).

*At this stage the calculated masses are based off a design for pressure loading only, and excludes ancillary items (e.g. bolts, seals, lugs), final masses will be higher.

Design - Cryostat Support

- The cryostat support system is being developed by KIT (Adrian Schwenck, Klaus Müller).
- Loading from the liquid xenon is ~10x larger than the LZ or XENONnT vessels (>100 T).
- Suspension from three high-strength stainless steel tie-rods.
- XENONnT style levelling system, with additional integrated load cells to check for uniform loading.
- For the XLZD cryostat, the buoyancy load case also needs to be considered.

Design - Passive LXe

- Design studies of LXe saving options are being undertaken by Dan Wilcox and Daniel Wells-Calvo (RAL-TD).
- Goals:
 - Minimise passive LXe volume in the ICV.
 - Minimise the ICV head thickness.
 - For outer detector (OD) efficiency.
 - Ensure ICV remains code compliant.
- Exploring options such as:
 - Flat head options (with/ without reinforcement ribs).
 - Inverse head profiles (with/ without reinforcement ribs).
 - LXe displacer materials.
- Also assessing the options in terms of manufacturability, and their effect on interfaces.

Manufacturing Challenge

- For the vertical access laboratories, the cryostat is too large to be taken underground in one piece. Implications are:
 - Some amount of underground manufacture is required.
 - Underground manufacture is expensive.
 - Specialist equipment is required, and underground infrastructure is needed for the work.
 - Underground manufacture brings technical challenges.
 - Underground manufacture brings more project risks.
- Early engagement with industry is very important to address this.

Manufacturing the Cryostat at Boulby

Manufacturing Underground

Segmented ICV

- We are exploring (with industrial input) methods for segmenting the cryostat vessels prior to transport underground.
 - Ensuring the chosen segmentation is compatible with the planned underground manufacturing method.
- The CAD model shows the cryostat split into the largest potential envelope at Boulby.
 - This segmentation is driven by the desire to simplify the underground welding processes.
 - For smaller sized envelopes, longitudinal segmentation may be required.

Testing/Inspections Underground

- In addition to the manufacturing, for code compliance and acceptance tests/ inspections would also need to take place underground:
 - Weld inspections.
 - Geometry surveying.
 - Load testing support and lifting features.
 - Leak testing.
 - Hydraulic pressure testing.
 - ICV OCV fit checking.

LZ cryostat testing/ inspection examples:

Industrial Engagement

- Industry Open Day for the XLZD@Boulby Cryostat held in December 2024.
 - Over 60 companies (mostly UK based) attended the event.
- Contract with Advanced Manufacturing Research Centre (AMRC):
 - Gateway to UK industry, assessment of manufacturing needs and capabilities.
- Contract with TUV:
 - To ensure vessel code compliance.
- Working with/ towards contracts on:
 - Chemical etching (precision cleaning)
 - Electroplating
 - Fabrication

Thank you

Facebook: Science and Technology Facilities Council Twitter:@STFC_matters

YouTube: Science and Technology Facilities Council

Additional Material

Cryostat Options

- Material
 - Grade 1 titanium, 300-series stainless steel, or nickel.
- Cryostat size
 - Geometry for an 80 T or 60 T LXe TPC.
- TPC attachment
 - Top, bottom, or both.
- Support type
 - Legs or suspended.
- HV delivery location
 - Side or top.
- Service feedthrough location
 - Top or top and bottom.
- ICV to OCV connection.
- Passive LXe saving.

Material Searches

- Three options:
 - CP Titanium Grade-1 from TIMET following LZ cryostat.
 - Stainless steel from NIRONIT following XENONnT cryostat.
 - Ultra-pure nickel following announcement from nEXO inner vessel.
- Our aims are to be working closely (directly) with:
 - Fabricator of the raw material.
 - Mills performing raw material hot rolling and forging (procuring sheets and flanges).
 - Mills performing welding wire drawing from the raw material.
- First sample of Ti (EB melt) and Stainless Steel (from NIRONIT) are being screened for radon, U, and Th. Several options for surface treatment are being investigated.

Passive LXe saving options

Concept	Priority	Analysis method
Repeat torispherical head analysis	1	Design by rule, PD5500
Flat head, no ribs	1	Design by rule, PD5500
Inverse dished end, no ribs	2	Design by analysis, PD5500, axisymmetric elastic analysis
Flat head with ribs (radial)	2	Design by rule, EN13445 Part 3 Section 21
Flat head with ribs (square)	3	Design by analysis, PD5500/ASME, 3D analysis, elastic or limit load?
Inverse dished end, with ribs (radial)	3	Design by analysis, PD5500/ASME, 3D analysis, elastic or limit load?
Xenon displacer, Ti shell with He gas	4	Design by analysis, PD5500, axisymmetric elastic analysis
Pressure balanced disk with He gas	5	Design by analysis, PD5500, axisymmetric elastic analysis
Flat head with ribs (other)	6	Design by analysis, PD5500/ASME, 3D analysis, elastic or limit load?
Inverse dished end, with ribs (other)	6	Design by analysis, PD5500/ASME, 3D analysis, elastic or limit load?
Xenon displacer, alternative options	6	Design by analysis, PD5500/ASME, 3D analysis, elastic or limit load?

Removing the Vessel Bottoms

