XLZD at SURF

Tom Shutt, SLAC

XLZD Collaboration Mtg, Gran Sasso, June 30, 2025

1

Opportunity for XLZD at SURF

- SURF is the only viable US based underground research laboratory.
- Two options have been considered:
 - New cavern(s), for which an ancillary expansion was completed in 2024
 - DUNE Cavern 4
- Will focus here on DUNE Cavern 4: most attractive option
- Ross Shaft and Crews currently demonstrating capabilities for movement of large scientific equipment
- SDSTA has track record of private and SD state support
 - Initial ~\$100M investment to create SURF
 - ~\$20M investment to create Davis campus, support LUX
 - Substantial investment in LZ, including LXe procurement.

4850' level at SURF

LBNF / DUNE Footprint

Cavern 4

- Size: 20m W x 28m H x 75m L (half the total hall length).
- Power 500 kW installed
- HVAC 15 m³/s (30 kcfm) filtered flowthrough air with 7.2° C dewpoint

DUNE Cavern 4 – Experiment Layout

DUNE Cavern 4 Dimensions

- Tall cavern readily accommodates full vertical access
- Notion: Rn-scrubbed clean room above water tank.
- Ample floor space for

XLZD at SURF, Gran Sasso Mtg, July 2, 2025, T. Shutt

Cryogenics

- 3 x 100 kW LN2 modules under fabrication for FD1/2.
- 4th unit planned for FD3(/4).
- DUNE detectors require ~90 kW steady state
 - Much larger during filling.
- Opportunity for XLZD

Benefits of using DUNE Cavern 4

- Excavated Space is Complete
 - Dimensions exceed the requirements specified by XLZD Dark Matter Collaboration
 - Installed cranes meet the same requirements for lifting capacity and hook height
- Electrical, Ventilation, and Mechanical Infrastructure Are Under Construction
 - There is sufficient margin on conventional utilities
- Is substantial cryogenic infrastructure for DUNE, which we may leverage, though possibly with some supplement may be needed
- Cost of this space substantially less than a new cavern.

Initial Outfitting Cost Estimates

DUNE Cavern 4

DUNE FD4 Cavern Outfitting	
Project Mgt @1%	\$217
Architect / Engineer @8% + Indirect	\$1,736
FD4 Outfitting	\$14,104
Escalation 1 - 2011 to 2023	\$5,850
Contingency @40%	\$8,763
Total Cost (Current Year \$*1000)	\$30,670
Future years escalation to 2030	\$6,441
Total Cost (2030 \$*1000)	\$37,110

New Cavern

New Cavern Relevant Costs Pulled from DUSEL PDR	
Project Mgt @1%	\$690
Architect / Engineer @5%	\$3,284
Support Infrastructure	\$21,543
Main Hall (like LM2)	\$16,988
2nd Hall (like LM1)	\$7,893
Construction Subtotal	\$46,424
Escalation 1 - 2011 to 2023	\$19,257
Design + Construction	\$69,655
Contingency @40%	\$27,862
Total Cost (Current Year \$*1000)	\$97,516
Future years escalation to 2030	\$20,478
Total Cost (2030 \$*1000)	\$117,995

Expansion Drift to support New Cavern(s)

Ancillary Expansion Finished 2024

- Length of this drift exceeds 200m
- Overall volume of approximately 4,000 m³
- Several shop areas sized for 5m x 5m with 5-ton hoist beams
- Excellent supplementary storage close to the Ross Shaft

4850 Access – Ross Shaft

CAD Representation of Cylindrical Section in the Cage Compartment

4850 Access – Ross Shaft

- Large Components are Slung Under the Cage Similar to LZ
 - Ross Shaft has been Laser Scanned for Accuracy
- Cylindrical OV Sections in the Cage Compartment

XLZD at SURF, Gran Sasso Mtg, July 2, 2025, T. Shutt

Estimated Allowed Cryostat Size

- Overall constraints similar to Boulby -OV in sections, IV will need to welded UG. Flanges transported intact.
- Based on the largest cylindrical section that can be slung under the Ross cage
- Comfortably large for 80 ton experiments:
 - Inner: 3.36 m Ø, 5.5 m H
 - Outer: 3.61 m Ø, 6.06 m H
- Grids readily transported intact.

South Drift and Governor's Corner

5m X 5m Access Ways

Off-Loading at 4850

- Ross Station had Monumental Upgrade for large LBNF / DUNE Steel
- Access Drift to South Cavern 5m X 5m

Shown:

LBNF / DUNE Cryostat L-Beam in Ross Cage

5.5 m tall x 3.6 m long 5400 kg (~12,000 lb)

Off-Loading at 4850

- Longer , Heavier Loads in the Skip Compartment Cage
- To Left: Simulation of 13.7m, 7500 kg (16,500 lb) LBNF / DUNE Cryostat Beam in Skip Cage

Summary

- DUNE Cavern 4 has more than adequate space for XLZD.
 - Required utilities are already under construction
 - Airflows sized for 10,000 tonne Argon detector
- Supplemental infrastructure needed for XLZD can be furnished with sufficient lead time:
 - XLZD-specific electrical substation with transformers
 - Radon mitigation equipment
 - Cooling water systems
 - Likely expansion of cryogenics
- Ross Shaft was refurbished for LBNF / DUNE all modern hoisting equipment
- SDSTA has strong track record of raising both private and state funds to support science at SURF.