WG5 Siting Update XZLD Collaboration Meeting 30 June 2025

Candidate Sites

Facilities and locations being considered; laboratory representatives also indicated

Location		D	epth	Muon flux	
Kamioka (JP)	/Lab-C	1,000 m	2,700 m w.e.	128 /m ² /d	Y. Itow
LNGS (IT)	/Hall C	1,400 m	3,800 m w.e.	29.7 $/m^2/d$	M. Selvi
Boulby (UK)	/New	1,300 m	3,330 m w.e.	14.6 /m ² /d	H. Araujo
SURF (USA)	/New	1,490 m	4,300 m w.e.	4.6 /m ² /d	D. Akerib (D. Taylor)
SNOLAB (CA)	/Cube Hall	2,070 m	5,890 m w.e.	<0.3 /m ² /d	H. Lippincott

Candidate Sites

Facilities and locations being considered; laboratory representatives also indicated

Horizontal access

Location		D	Muon flux		
Kamioka (JP)	/Lab-C	1,000 m	2,700 m w.e.	128 /m ² /d	Y. Itow
LNGS (IT)	/Hall C	1,400 m	3,800 m w.e.	29.7 /m ² /d	M. Selvi
Boulby (UK)	/New	1,300 m	3,330 m w.e.	14.6 /m ² /d	H. Araujo
SURF (USA)	/New	1,490 m	4,300 m w.e.	4.6 /m ² /d	D. Akerib (D. Taylor)
SNOLAB (CA)	/Cube Hall	2,070 m	5,890 m w.e.	<0.3 /m ² /d	H. Lippincott

Vertical access (with shaft)

Candidate Sites

Facilities and locations being considered; laboratory representatives also indicated

Existing facilities

Location	ocation		Muon flux		
Kamioka (JP)	/Lab-C	1,000 m	2,700 m w.e.	128 /m ² /d	Y. Itow
LNGS (IT)	/Hall C	1,400 m	3,800 m w.e.	29.7 $/m^2/d$	M. Selvi
Boulby (UK)	/New	1,300 m	3,330 m w.e.	$14.6 / m^2 / d$	H. Araujo
SURF (USA)	/New	1,490 m	4,300 m w.e.	$4.6 / m^2 / d$	D. Akerib (D. Taylor)
SNOLAB (CA)	/Cube Hall	2,070 m	5,890 m w.e.	<0.3 /m ² /d	H. Lippincott

New excavation needed

WG5 Updates

- In Spring, Hugh Lippincott replaced Henrique Araujo as co-chair with Marco Selvi
 - Henrique now leading XLZD@Boulby pre-Construction project
- Preliminary Shortlisting Report released last April: <u>link</u>
 - In 2024, three sites were shortlisted: Boulby, LNGS, SURF
 - See matrix on next slide
- With recent nEXO news, SNOLAB has re-engaged more directly
 - Hugh has been on SNOLAB Experimental Advisory Committee for last three years, serving as new point of contact
 - WG5 after discussion with Exec agreed to add SNOLAB to the shortlist
 - See XLZD@SNOLAB talk in next session

Siting Report

INTERIM REPORT

XLZD-TN-2024-XXX

SHORTLISTING OF UNDERGROUND LABORATORIES

TO HOST A NEXT-GENERATION LIQUID XENON OBSERVATORY

FOR RARE EVENT SEARCHES

For the XLZD Consortium:

D.S. Akerib^{†1}, H.M. Araújo^{†+2}, A.-P. Colijn³, J. Cuenca⁴, P. Decowski³, P. Di Gangi⁵,
Y. Itow^{†6}, V.A. Kudryavtsev⁷, A. Lindote⁸, M. Schumann⁹, A. Schwenck¹⁰, M. Selvi^{†+5},
T.J. Sumner², D. Taylor¹¹, K. Valerius¹⁰, B. von Krosigk^{†10}, and R. Wang¹²

¹ SLAC National Accelerator Laboratory, ² Imperial College London, ³ Nikhef & the University of Amsterdam ⁴ University of Zurich, ⁵ University of Bologna & INFN-Bologna, ⁶ Nagoya University, ⁷ University of Sheffield, ⁸ LIP-Coimbra & University of Coimbra, ⁹ University of Freiburg, ¹⁰ Sanford Underground Research Facility, ¹¹ Karlsruhe Institute of Technology, ¹² University of Alabama

> [†]Underground laboratory liaison roles *Lead contacts: h.araujo@imperial.ac.uk; selvi@bo.infn.it

Contents

1 Introduction

2 Candidate Sites

2.1	Boulby Underground Laboratory (UK)
2.2	Kamioka Observatory (JP)
	Laboratori Nazionali del Gran Sasso (IT)
	SNOLAB (CA)
	Sanford Underground Research Facility (USA)
	Test Facility

3 Physics Backgrounds Requirements

3.1	Cosmogenic backgrounds .								
3.2	Shielding the main detector								
3.3	Airborne radon								
0 4	A shall the seal of a seal shall all the sea								

4 Infrastructure Requirements

4.1	Underground facility							•	•		
4.2	Surface facility				•			•	•		

- **5** Additional Considerations
- 6 Compliance Matrix 6.1 Explanatory notes
- 7 Summary and Shortlist

Siting Matrix (2024)

Requirement categories

- SCI-BG: backgrounds thanks to Vitaly, Alex, Pietro, Ryan, Jose
- INS-UG: instrument sizing thanks to Tim and A-P
- FAC-UG: underground facilities thanks to Tim and A-P
- FAC-SF: surface facilities thanks to Tim and A-P

the site meets the requirement;

the site does not comply presently but has plans to do so, or does not strictly comply but is close;

the site cannot comply, and there are no plans to do so.

Table 8: Compliance matrix for the candidate sites against the requirements.

Requirement ID	Note	Boulby	Kamioka	LNGS	SNOLAB	SURF
SR-XLZD-SCI-BG-0010	Muon (DM)		128 m ² /d			
SR-XLZD-SCI-BG-0020	Muons (0vββ)		128 m ² /d			
SR-XLZD-INS-UG-0010	Space 1	Planned 2030	350 m ²	Minor mods	280 m ²	Planned 2030
SR-XLZD-INS-UG-0020	Space 2	Planned 2030	Hall-D?	With mods	208 m ²	Planned 2030
SR-XLZD-INS-UG-0025	Space 3 (OD)	Planned 2030				Planned 2030
SR-XLZD-INS-UG-0027	LS					Planned 2030
SR-XLZD-INS-UG-0030	Tank	Planned 2030	10 m (D & H)			Planned 2030
SR-XLZD-INS-UG-0035	Crane(19.5)	Planned 2030			~18.5 m	Planned 2030
SR-XLZD-INS-UG-0037	Crane(15)	Planned 2030	Replace 2.6 t			Planned 2030
SR-XLZD-FAC-UG-0010	Radioassay					
SR-XLZD-FAC-UG-0020	LN2 supply	1,500 L/day		TBC	300 L/day	Power/vent
SR-XLZD-FAC-UG-0030	Ventilation	Planned 2028				Planned 2030
SR-XLZD-FAC-UG-0040	Radon	Planned 2028	TBC	Exists, TBD	TBC	Planned 2030
SR-XLZD-FAC-UG-0050	Comms					Planned 2030
SR-XLZD-FAC-UG-0060	Power	Planned 2030	With mods			Planned 2030
SR-XLZD-FAC-UG-0070	Workshop	Planned 2030	Small one	TBC		Planned 2030
SR-XLZD-FAC-UG-0080	Messroom	Planned 2030				Planned 2030
SR-XLZD-FAC-UG-0090	Goods-in	Planned 2030	30 m ²			Planned 2030
SR-XLZD-FAC-UG-0100	Storeroom	Planned 2030	With mods	Minor mods		Planned 2030
SR-XLZD-FAC-UG-0105	Max size	4.0 m D × 0.75 m H	4.0 m D × 2.6 m H	4.0 m D × 5.0 m H	TBC	3.9 m D × 1.5 m H
SR-XLZD-FAC-UG-0110	Manufacture	Planned 2028	N/A	N/A	TBC	Planned 2030
SR-XLZD-FAC-UG-0120	Cleaning	Planned 2028	N/A	N/A	TBC	Planned 2030
SR-XLZD-FAC-UG-0130	Assembly	Planned 2028	N/A	N/A	TBC	Planned 2030
SR-XLZD-FAC-SF-0010	Surface	Planned 2028				Planned 2030

Siting Matrix (2024)

- Several requirements laid down in siting report
 - Might be useful for WBS exercises
- To be updated with new SNOLAB information (turning most of the red SNOLAB boxes green or orange)
- Will continue to update this as we go forward

the site meets the requirement;

- the site does not comply presently but has plans to do so, or does not strictly comply but is close;
- the site cannot comply, and there are no plans to do so.

Table 8: Compliance matrix for the candidate sites against the requirements.

Requirement ID	Note	Boulby	Kamioka	LNGS	SNOLAB	SURF
SR-XLZD-SCI-BG-0010	Muon (DM)		128 m ² /d			
SR-XLZD-SCI-BG-0020	Muons $(0\nu\beta\beta)$		128 m ² /d			
SR-XLZD-INS-UG-0010	Space 1	Planned 2030	350 m ²	Minor mods	280 m ²	Planned 2030
SR-XLZD-INS-UG-0020	Space 2	Planned 2030	Hall-D?	With mods	208 m ²	Planned 2030
SR-XLZD-INS-UG-0025	Space 3 (OD)	Planned 2030				Planned 2030
SR-XLZD-INS-UG-0027	LS					Planned 2030
SR-XLZD-INS-UG-0030	Tank	Planned 2030	10 m (D & H)			Planned 2030
SR-XLZD-INS-UG-0035	Crane(19.5)	Planned 2030			~18.5 m	Planned 2030
SR-XLZD-INS-UG-0037	Crane(15)	Planned 2030	Replace 2.6 t			Planned 2030
SR-XLZD-FAC-UG-0010	Radioassay					
SR-XLZD-FAC-UG-0020	LN2 supply	1,500 L/day		TBC	300 L/day	Power/vent
SR-XLZD-FAC-UG-0030	Ventilation	Planned 2028				Planned 2030
SR-XLZD-FAC-UG-0040	Radon	Planned 2028	TBC	Exists, TBD	TBC	Planned 2030
SR-XLZD-FAC-UG-0050	Comms					Planned 2030
SR-XLZD-FAC-UG-0060	Power	Planned 2030	With mods			Planned 2030
SR-XLZD-FAC-UG-0070	Workshop	Planned 2030	Small one	TBC		Planned 2030
SR-XLZD-FAC-UG-0080	Messroom	Planned 2030				Planned 2030
SR-XLZD-FAC-UG-0090	Goods-in	Planned 2030	30 m ²			Planned 2030
SR-XLZD-FAC-UG-0100	Storeroom	Planned 2030	With mods	Minor mods		Planned 2030
SR-XLZD-FAC-UG-0105	Max size	4.0 m D x 0.75 m H	4.0 m D x 2.6 m H	4.0 m D × 5.0 m H	TBC	3.9 m D × 1.5 m H
SR-XLZD-FAC-UG-0110	Manufacture	Planned 2028	N/A	N/A	TBC	Planned 2030
SR-XLZD-FAC-UG-0120	Cleaning	Planned 2028	N/A	N/A	TBC	Planned 2030
SR-XLZD-FAC-UG-0130	Assembly	Planned 2028	N/A	N/A	TBC	Planned 2030
SR-XLZD-FAC-SF-0010	Surface	Planned 2028				Planned 2030

WG5 Next Steps

- Many technical details on the instrument have still to be defined. Need to spell out those aspects to fully proceed with siting evaluation, e.g.:
 - LN2 needs
 - Recovery vessels
 - Reduced radon
- This will interface with the WBS exercise, to spell out the specific of each site
- On the political side (Exec level), we are basically in "stand-by" mode: waiting to see if and how the UK option will proceed.
- It is also clear that before any realistic approval to be hosted in any of the Lab we need to have some funding approval.
- Need to keep good communicating with the sites and funding agencies to understand needs
 - E.g. expressions of interest, preliminary commitments to secure funding

Siting WG next steps

- What else needs to be finalized for this document?
 - Requirements
 - Atmospherics are different from place to place. Need to formally include that in teh report Oxford group doing this (Giles Barr) Dan T might know about it
 - Difference in radiogenics in different labs shielding outside the water tank. Factor 2 meant to cover some of this
 - XnT 100 kg outside/LZ has XX need a proper MC of activation (not done in the 0vBB paper)
 - 20 cm of borated plastic
 - Other...
- Still need to spell out the technical details of some key subsystems (e.g. Xe recovery, Cryogenics, ...) before a realistic interaction with the various sites can fruitfully happen
- What are sites actually doing at the moment to think about how you would build XLZD at that site?