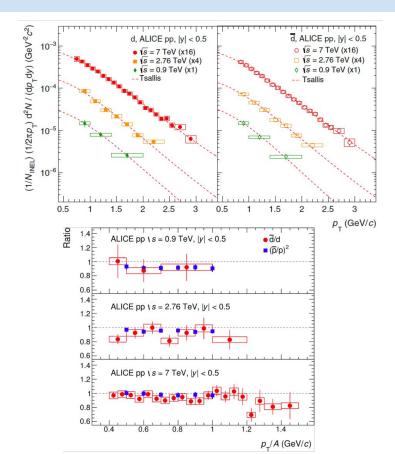
Deuteron yield & p-p femtoscopy measurement in pp collisions at √s = 900 GeV in Run3 data Paper Overview

Istituto Nazionale di Fisica Nucleare

Neelima Agrawal

University and INFN Bologna, Italy

ALICE TOF and e-PIC meeting 26 March 2024



Motivation #1: (anti)deuteron production

- d and dbar production in pp 900 GeV was measured in Run 1 with limited precision and p_⊤ coverage
- Lowest energy at the LHC
 - → useful for validating the extrapolations at low energy in model tuning and astrophysical applications
- larger data sample wrt Run1 available + when we started the analysis, used to test performance of ALICE2

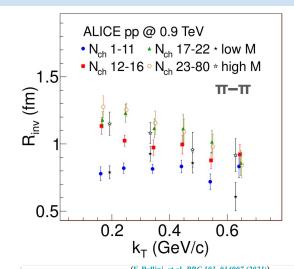
With the new measurement:

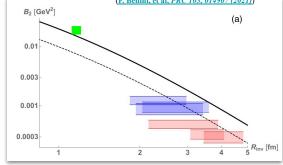
- higher granularity in $oldsymbol{p}_{\scriptscriptstyle\mathsf{T}}$
- extension to lower p_{T}
- increased precision on yields and dbar/d ratio
- comparison with models (incl. PYTHIA production via inelastic processes and coalescence implementations)

Motivation #2: determination of proton source size

- The pion source is measured in Run1 for pp collisions at 900 GeV (right plot)
 ALICE Coll: PRD 82, 052001 (2010), ALICE Coll: PRD 84, 112004
- No proton source was measured at 900 GeV → first measurement
- Interesting to study <m_T> scaling and multiplicity dependence
- Application: measure the proton source size and use it in a coalescence model to predict the production of antideuteron, then compare with the new deuteron measurement in ALICE.

(coal.: M. Mahlein et al., Eur. Phys. J. C (2023) 83: 804)


→ requires knowledge of emission source size and anti-deuteron production for the same event classes


For example, the **coalescence parameter** for **deuteron formation** can be calculated as -

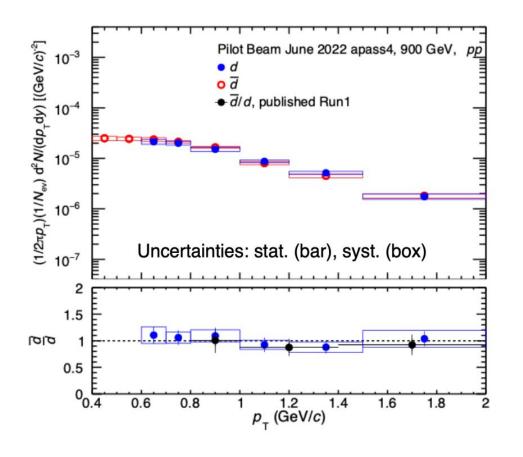
$$\mathcal{B}_2(p) \approx \frac{2(2s_d+1)}{m(2s_N+1)^2} (2\pi)^3 \int d^3\mathbf{r} |\phi_d(\mathbf{r})|^2 \mathcal{S}_2(\mathbf{r}).$$

Probability to form a (anti)d from nucleons

Source function \rightarrow radius from femtoscopy

The current status of the two analysis

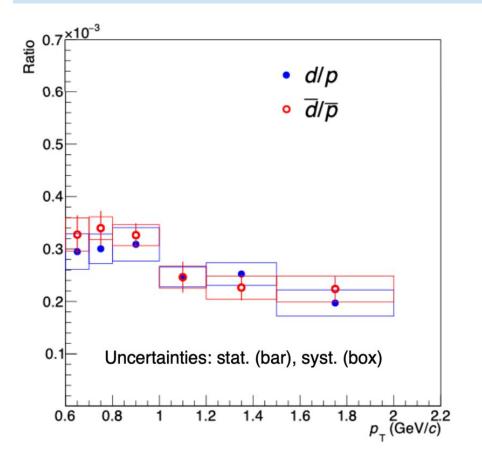
ANALYSIS SUMMARY AND STATUS


- Analysis 1 Proton source size measurement is completed
 - → paper proposal presented in February at Femto PAG meeting (https://indico.cern.ch/event/1514582/)
 - → given analysis note with final results (https://alice-notes.web.cern.ch/node/1517)
 - → got green light from ARC and PAG
- Analysis 2 Deuteron yield analysis is close to be completed
 - → will be presented to the PWG in April
 - → analysis note is ready to upload for ARC and PWG comments and approval

After approval by nuclei PWG, a combined paper proposal is planned to be presented in April to PWG-LF+CF and subsequently to the Physics Forum

Paper content/figures

- p_{T} -spectrum of deuteron and anti-deuteron, comparison with Run 1
- (anti-)deuteron to (anti-)proton ratio as a function of p_{T}
- Fully corrected correlation function, fitted with model
- Coalescence parameter (B2) as a function of p_{T}/A


deuteron corrected p_{T} spectrum - candidate for the paper

The (anti)deuteron p_{T} spectra is calculated in the (0.4) 0.6 to 2 GeV/c p_{T} range

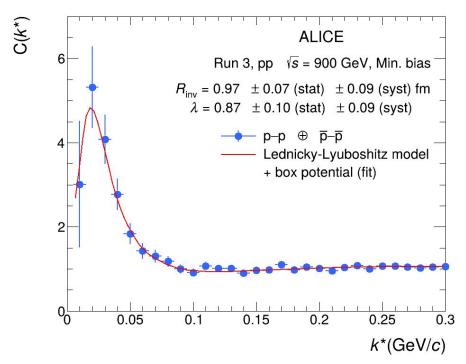
- → shows good agreement with each other
- → particle to antiparticle ratio is in agreement with the already published Run1 data
- ightarrow extended the $p_{\rm T}$ range and granularity as compared to Run1 data
- → increased statistical precision

Deuteron/p ratio vs pt - candidate for the paper

The (anti)deuteron to (anti)proton ratio is calculated

- → higher d/p at low pt suggests thermal production
- → lower d/p at high pt, a hint of coalescence

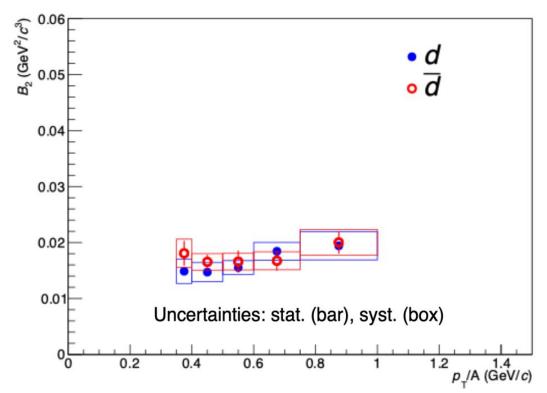
Ratio:


- \checkmark d/p: 0.00132 ± 0.00007 (stat) ± 0.00015 (sys)
- ✓ anti-d/anti-p: 0.00138 ± 0.00004 (stat) ± 0.00011 (sys)

(quite in a good agreement with Run1)

Run 1

Measuring the proton source size - candidate for the paper



Free λ from the fit = 0.87 and the λ calculated by pair purity and primary fraction = 0.83 can be considered as an indirect validation of the theoretical model used for the fit

- → The **correlation function** is divided by the baseline, then fitted
- → Fit is done by using the Lednicky-Lyuboshitz model with a box potential approach (LL model presentation link: https://indico.cern.ch/event/1270991/)
- → The fit function is calculated as $CF_{fit}(k^*_{rec}) = N (1 + \lambda (CF_{smeared}(k^*_{rec}) 1))$
- → λ in fit is **free parameter** From MC: $\lambda^{\text{purity}} \times \lambda^{\text{primary}} \approx 0.83$

From Fit: $\lambda = 0.87$

Coalescence (B₂) parameter - candidate for the paper

The coalescence (B2) parameter for deuteron and antideuteron is calculated

- \rightarrow smoothly increases for deuteron as a function of p_{τ}/A
- → almost flat for antideuteron case
- →calculations from coalescence model is ongoing (generating pythia events for 900 GeV)
- \rightarrow once the calculation from model is ready, it will be added to the plot

Summary

The whole idea of the paper of combining the two measurement is presented

- → due to the complementary work from both analysis is well suited for a single publication
- ightarrow also, making two publication can be challenging due to lack of enough material and mainly the physics aspects side too

The two analysis crew from CF and LF are merged together for the final paper proposal to make it a one presentation

- → the planned timeline is after the QM2025 conference in april
- → PWG already liked the idea of combining two work together and would like to bring it to the Physics Forum too
- → your valuable feedback/suggestions on the overall paper plan/content is important to us

Thank you for your attention ..