

Istituto Nazionale di Fisica Nucleare SEZIONE DI TORINO

Ideas for measuring neutron fragmentation cross sections

Iram B. Rivas Ortiz & Piergiorgio Cerello on behalf of Torino group

MAECI MOFFIITS Collaboration Meeting – Riccione, 26-28/05/2025

2

Ferrero. et al., Scientific Reports, 8:4100, 2018. DOI:10.1038/s41598-018-22325-6

 $TOF = t_d - t_0$

The time-of-flight distribution is the difference between the photon arrival time t_d and the primary crossing time t_0

Differences in the particle range due to changes in the target density corresponds to modifications of the TOF distribution shape.

Beam: 166.41 MeV/u Carbon Ion Target: PMMA (15x15x30 cm3) Deposited energy : (1, 10) MeV Sub-clinical rate: average 5e6 pps; instantaneous 2e8 pps

total gammas neutrons

protons

electrons

Beam: 166.41 MeV/u Carbon Ion Target: PMMA (15x15x30 cm3) Deposited energy : (1, 10) MeV Sub-clinical rate: average 5e6 pps; instantaneous 2e8 pps

Neutron related peak is visible in our experimental measurements in agreement with simulation.

Towards neutron measurements: preliminary MC simulation

Charged particle filtering Combinatorial background rejection Neutron time distribution from TOF distributions Neutron kinetic energies from neutron time distributions Number of incoming neutrons in the secondary detector

Experimental setup for the beam test carried out at CNAO in April 2025

- **398.84 MeV/u carbon ion beam, clinical intensity,** irradiate **PMMA target** (1.00 cm thickness).
- Carbon ion signals monitored with using an **8-strip silicon sensor.**
- Lanthanum Bromide (LaBr3:Ce) crystal with 5x5 SiPM array.
- **Plastic scintillator** in front of LaBr3:Ce crystal with 5x5 SiPM array.
- CAEN DT5742 digitizer operating at 2.5 GHz

Very (very) preliminary test @ CNAO

Data acquisition was carried out at five detector position (15 minutes each):

- A (distance: 100 cm, polar angle: 45°)
- **B** (distance: 80 cm, polar angle: 45°)
- C (distance: 100 cm, polar angle: 30°)
- **D** (distance: 80 cm, polar angle: 30°)
- **E** (distance: 100 cm, polar angle: 15°)

FLUKA version 2024.1 was used for the simulations. Only the LaBr3:Ce crystals were modeled

Charged particle filtering at the waveform level using the LaBr3:Ce and the plastic scintillator signals.

Charged Particle Event:

Signals recorded by the plastic scintillator allow us to identify charged secondaries at the early post processing stage .

Neutral Particle Event: No charged from the plastic scintillator indicates the detection of a neutral particle.

 $TOF = \mathbf{t_d} - \mathbf{t_0}$

Carbon ion timing: Gaussian fit. Secondary particle timing: Linear fit on rising edge.

TOF distributions composed by real and fake coincidences. Fake coincidences contribute to a large **combinatorial background** estimated by the SNIP algorithm (Ryan et al. 1988).

Ryan et al., Nucl. Instr. Meth. Phys. Res. Sec. B., 34(3), 1988, doi: 10.1016/0168-583X(88)90063-8

Gammas + Neutrons TOF distributions

Low statistics but promising results at clinical rate.

Gammas + neutrons TOF distribution for detector position E (100 cm, 15 degrees)

NFN

Neutron kinetic energy

The neutron kinetic energies are estimated using the relativistic formula:

$$K=mc^2igg(rac{1}{\sqrt{1-v^2/c^2}}-1igg)$$

Beam Intensity: 3.0E+07 pps

Acquisition Rate: 1.5 - 2 kHz during spill, 0.5 kHz averaged

Delivered Particles (150 spills / detector position): 4.5E+09

Detector position (distance, angle)	Detected signals (counts)	Detected neutral signals (counts)	Detected Neutrons (After bkg subtraction) (counts)
100 cm, 45 deg	181571	93873	682
80 cm, 45 deg	226051	98660	902
100 cm, 30 deg	295536	116453	956
80 cm, 30 deg	365717	116708	1078
100 cm, 15 deg	352408	86891	1449

Different detector depths were investigated:

- 3.81 cm

- 7.62 cm (2x),

- 11.43 cm (3x)

Curve fitting following the Beer -Lambert law:

 $N(d) = N_0(1 - e^{-\alpha d})$

MC Setup:

- Carbon ion pencil beam (398.84 MeV/u)
- Cone shape detector (equal solid angle along depth)
- Vacuum surroundings

Position E (d = 1m) Duration: 6E+02 s (10 mins) Neutrons: 1.4E+03 = 2.3 n/sTriggers: 4.4E+05Delivered Particles: 4.5E+09

n/shift: 6.6 E+04 -> if 5 detectors: 3.3 E+05 n/shift if 25 Energy bins (20 MeV bins up to 1 GeV): 1.3E+04 n/energy bin if 5 angles: ~ 2600 n/E_bin/angle

if 18 angular bins (5 degrees / bin): about 4* shifts/beam energy

*delivery not optimised, a factor ~ 2 could be gained 1 cm PMMA target events at different angles can be summed for absorption coefficient evaluation

- What crystals? How many? How many depths? What distance from the target?
- What primary detector? Are silicon strips the best? Plastic scintillator?
- What mechanical structure to minimise physics background?
- Targets: C, Polyethylene, PMMA
- Energies
 - Up to 400 MeV C at CNAO (+ O, sometime in the future)
 - $_{\odot}$ GSI for higher energies?

Backup Slides

Backup: Experimental TOF distribution to neutron time distribution

Neutron estimation from experimental TOF distributions at different detector positions.

Detector Position	Gammas + Neutrons)	Estimation (N2)
А	1422	682 ± 261
В	1793	902 ± 262
C	2127	956 ± 248
D	2772	1078 ± 371
E	2837	1449 ± 252

TOF distribution to neutron time distribution

Linear combination of two Γ distributions:

$$f(t;N_1,lpha_1,eta_1,N_2,lpha_2,eta_2) = N_1rac{t^{lpha_1-1}e^{-t/eta_1}}{\Gamma(lpha_1)eta_1^{lpha_1}} + N_2rac{t^{lpha_2-1}e^{-t/eta_2}}{\Gamma(lpha_2)eta_2^{lpha_2}}$$

 $\alpha 1$, $\beta 1$ [0, 1] and $\alpha 2$, $\beta 2$ (1, ∞): Shape parameters. N1 and N2: Weighting coefficients that can be interpreted as the contribution of gamma rays and neutrons to the overall TOF distribution.

Double gamma fitting applied to the simulated TOF distribution (gammas + neutrons) at detector position A (100 cm 45 degrees).

Neu	atron estimation	on estimation from simulated TOF			
Detector Position (distance, angle)	Gammas + Neutrons (MC truth)	Neutrons (MC truth)	Neutron Estimation (N2 parameter)		
100 cm 45 deg	1528	906	901 ± 15		
80 cm 45 deg	2320	1372	1343 ± 19		
100 cm 30 deg	2837	1940	1852 ± 17		
80 cm 30 deg	4296	2941	2756 ± 31		
100 cm 15 deg	6940	5474	5035 ± 38		

Backup: silicon strip sensor

Strips with: Width \rightarrow 114 µm Length \rightarrow 26214 µm Pitch \rightarrow 180 µm Active thickness \rightarrow ~50 µm Capacitance \rightarrow ~7 pF

Courtesy of Emanuele Maria Data

24

Beam projection along the axis perpendicular to the strips $\times \frac{10^3}{600}$ E = 398.84 MeV/u - entries = 1.90E+07E = 208.58 MeV/u - entries = 1.86E+07E = 115.23 MeV/u - entries = 1.84E+07

 FWHM in agreement with values measured with gafchromic films

Data, E. M., et al. "A novel detector for 4D tracking in particle therapy." *NIM A* (2024), doi: 10.1016/j.nima.2024.169690

Courtesy of Emanuele Maria Data

lons per Spill

Counting efficiency vs energy

Pile up correction: (<u>10.1016/j.nima.2022.167195</u>) based on time duration of digital pulses and combinations between adjacent strips

- Efficiency larger than 90 %
- No dead region between strips
- Charge sharing between strips under study

2025-05-14