UPDATE ON THE ANALYSIS OF GSI ¹⁶O@200MEV/N DATA TAKING

A. Alexandrov, V. Boccia, N. D'Ambrosio, A. Di Crescenzo, G. De Lellis, G. Galati, A. Lauria, S. Masci, M. C. Montesi, V. Tioukov

> Università di Napoli 'Federico II'', INFN Napoli INFN LNGS

Università di Bari "Aldo Moro", INFN Bari

MAEC MOFFII

28/05/2025, XVIII General MAECI MOFFIITS FOOT Meeting

Paper READY! (already sent to the EB)

Measurement of 200 MeV/n 16 O nuclear reaction cross-section on carbon and polyethylene targets with the nuclear emulsion detector of the FOOT experiment

Galati Giuliana,^{1,2,*} Boccia Vincenzo,^{3,4,†} Alexandrov Andrey,⁴ Alpat Behcet,⁵ Ambrosi Giovanni,⁵ Argirò

Paper READY! (already sent to the EB)

Measurement of 200 MeV/n 16 O nuclear reaction cross-section on carbon and polyethylene targets with the nuclear emulsion detector of the FOOT experiment

Galati Giuliana,^{1,2,*} Boccia Vincenzo,^{3,4,†} Alexandrov Andrey,⁴ Alpat Behcet,⁵ Ambrosi Giovanni,⁵ Argirò

- Introduction
- Material and methods
 - Nuclear emulsion films
 - The nuclear emulsions spectrometer
 - Experimental set-up at GSI
 - Tracks and vertices reconstruction
 - Charge identification
- Monte Carlo simulation
- Cross Section evaluation
- Data analysis
 - Y measurement
 - N_B measurement
 - ϵ evaluation
 - Systematic error evaluation
- Results and discussion
- Conclusion

To be submitted on Physical Review C

Cross section evaluation

What's new:

- xsec evaluated layer by layer
- Weighted mean for each subsection

Total Cross Section Measurement

- *Y* = # of vertices (total xsec) or fragments (production xsec)
- • $N_B = \#$ of ions colliding on the target (includes the efficiency on beam reconstruction)

• $N_{TG} = \#$ of particles in the target: $\frac{\rho dN_A}{A}$, with:

•
$$\rho$$
 = target density:
 $\rho_C = 1.73g/cm^3$
 $\rho_{C_2H_4} = 0.94g/cm^3$

• d = target thickness: $d_C = 0.1cm \text{ per layer}$ $d_{C_2H_4} = 0.2cm \text{ per layer}$

•
$$N_A = 6.022 \cdot 10^{23} / mol$$

•
$$A = \text{molar mass:}$$

 $A_C = 12g/mol$
 $A_{C2H4} = 28g/mol$
• $\epsilon_{reco} = \text{reconstruction factor}$

One detector... many measurements!

- The energy loss within S1 is not negligible
- We divide S1 into sub-sections
- x denotes the sub-section

$$\sigma(x)_{C \text{ or } C_2H_4} = \frac{Y(x)}{N_B N_{TG} \epsilon_{\text{reco}}(x)}$$

Reconstruction efficiency

The **reconstruction factor** ϵ is defined as the ratio between the expected number of a certain quantity in MC True and the reconstructed one in MC Reconstructed

Number of vertices and number of produced fragments Y

What's new:

• tracking parameters improved \rightarrow higher efficiency

Angular distribution of fragments associated with reconstructed vertices

- \bullet Better agreement for the C₂H₄ target than for the C one
- The reduced agreement for the carbon target may be attributed to limitations in the modelling of nuclear interactions in the Monte Carlo simulation

Distribution of fragment multiplicity

- \bullet Better agreement for the C₂H₄ target than for the C one
- The reduced agreement for the carbon target may be attributed to limitations in the modelling of nuclear interactions in the Monte Carlo simulation

Number of reconstructed vertices in Section 1

• The number of reconstructed vertices presented in S1 is shown as a function of the integrated material traversed, defined as the product of the material thickness and its density. This parameter effectively quantifies the total amount of matter encountered by the particles.

Number of fragments reconstructed in Section 1

• The number of reconstructed vertices presented in S1 is shown as a function of the integrated material traversed, defined as the product of the material thickness and its density. This parameter effectively quantifies the total amount of matter encountered by the particles.

Number of beam particles N_B

 N_{R} evaluation

 \boldsymbol{Y}_{i} $\sigma_i|_{C \text{ or } C_2H_4}$ $N_{B_i} N_{TG_i} \epsilon^i_{reco}$

Fig. 2. Fraction of the remnant Carbon beam as a function of the traversed ECC material

- Each passive material layer can be considered a "new measurement"
- The number of incident beam particle on each layer has to be evaluated and is affected by its efficiency
- New approach: estimation from oxygen tracks

Evaluation of the number of beam particles for each subsection

For more details: https://agenda.infn.it/event/44578/contributions/250785/attachments/129107/191445/VB_PhysMeet_Dec24.pdf

- To determine the number of ions colliding with each target, optical microscope images were processed using a high-pass Gaussian filter, whose kernel size was optimized to match the typical dimensions of oxygen-induced pixel clusters.
- Plates outside 2σ from the fit have been removed and the fit performed again
- Assuming uniform fragment production across the target layers in S1, the average number of heavy secondary fragments produced can be estimated and subtracted from the slope of the fit to isolate the contribution from primary oxygen ions
- Monte Carlo validation gives 90% efficiency

Systematic error evaluation

- Comparison of the number of disappearing beam oxygens and the number of reconstructed vertices(*)
- Double check for cross section with <u>completely independent methods</u> (both in terms of hardware and software)
- Normalized difference between the two measurements is always below 3, indicating that the systematic uncertainty is smaller than the statistical one and can thus be considered negligible

 $|Y_V - N_B|$

* vertices in the nuclear emulsion film considered in this sample

Results and discussion

What's new:

• Comparison with Geant4

Total reaction cross section on C

- FLUKA: 10⁵ events (full detector)
- GEANT: 10⁶ events (1mm target)

TABLE II. Measured total reaction cross sections on C, C_2H_4 and H across different energy intervals.

Beam Ekin	σ_R on C	σ_R on C_2H_4	σ_R on H
$({\rm MeV}/n)$	$(\mathrm{cm}^{-2}\cdot 10^{-24})$	$(\mathrm{cm}^{-2}\cdot 10^{-24})$	$(\mathrm{cm}^{-2}\cdot 10^{-24})$
188 ± 7	1.00 ± 0.07	3.1 ± 0.2	0.3 ± 0.1
167 ± 10	1.10 ± 0.08	3.2 ± 0.2	0.3 ± 0.1
143 ± 11	1.05 ± 0.07	3.1 ± 0.2	0.3 ± 0.1
115 ± 14	1.00 ± 0.07	3.3 ± 0.2	0.3 ± 0.1
$\phantom{00000000000000000000000000000000000$	1.1 ± 0.1	3.2 ± 0.3	0.3 ± 0.1

TABLE IV.	Available	$\operatorname{results}$	from	other	experiments	for	σ_R
on C.					_		

Ref.	Beam Ekin	Angular	σ_R on C	
	$({ m MeV/n})$	Acceptance	$(\mathrm{cm}^{-2}\cdot 10^{-24})$	
Yamaguchi [31]	288	10°	$0.852{\pm}0.017$	
Zeitlin [32]	290	5.7°	$0.863{\pm}0.020$	
Zeitlin [32]	400	5.7°	$0.842{\pm}0.022$	

TABLE II. Measured total reaction cross sections on C, C_2H_4 and H across different energy intervals.

Beam Ekin	σ_R on C	σ_R on C_2H_4	σ_R on H
$({ m MeV}/n)$	$(\mathrm{cm}^{-2}\cdot 10^{-24})$	$(\mathrm{cm}^{-2}\cdot 10^{-24})$	$(\mathrm{cm}^{-2}\cdot 10^{-24})$
188 ± 7	1.00 ± 0.07	3.1 ± 0.2	0.3 ± 0.1
167 ± 10	1.10 ± 0.08	3.2 ± 0.2	0.3 ± 0.1
143 ± 11	1.05 ± 0.07	3.1 ± 0.2	0.3 ± 0.1
115 ± 14	1.00 ± 0.07	3.3 ± 0.2	0.3 ± 0.1
87 ± 8	1.1 ± 0.1	3.2 ± 0.3	0.3 ± 0.1

TABLE V.	Available	results	from	other	experiments	for c	σ_R
on CH_2 .					_		

Ref.	Beam Ekin (MeV/n)	Angular Acceptance	$\sigma_R ext{ on CH}_2 \ (ext{cm}^{-2} \cdot 10^{-24})$
Webber [33]	441	7.7°	1.260 ± 0.013
Webber [33]	591	7.7°	$1.316{\pm}0.013$
Webber [33]	669	7.7°	$1.328 {\pm} 0.013$

Note that the cross section on C_2H_4 is twice that on CH_2

Integrated cross section H

Total reaction cross section

$$Y_i = \langle \# \text{ of vertices} \rangle$$

Total production cross section

 $Y_i = \langle \# \text{ of fragments} \rangle$

Conclusions

In the present work, fragments are detected up to polar angles corresponding $\cot a \theta = 1$ (i.e. 45°), thus complementing existing data by covering a wider angular range and extending measurements to lower beam energies

To do list for the next days:

• Include Geant4 simulations in the paper

• Receive comments from EB

• Circulate to the Collaboration

• Send to PRC

