

MAECI

O+C₂H₄, O+H and H+O cross sections at **GSI2021**

Matilde Dondi, Riccardo Ridolfi, Marco Toppi

27 May 2025 **MAECI - MOFFIITS Meeting**

GSI2021 data

27 May 2025

- SC, BM and TW information used in the analysis
- 400 MeV/u beam on C target (5 mm) and C₂H₄ target (10 mm)

Cross section measurement

Angular differential cross section

$$\frac{d\sigma}{d\Omega}(Z) = \left(\frac{Y_{TG}(Z,\theta)}{N_{prim,TG}} - \frac{Y_{noTG}(Z,\theta)}{N_{prim,noTG}}\right) \frac{1}{N_{TG}\epsilon(Z,\theta)\Delta\Omega}$$

27 May 2025

Cross section measurement

Angular differential cross section

$$\frac{d\sigma}{d\Omega}(Z) = \left(\frac{Y_{TG}(Z,\theta)}{N_{prim,TG}} - \frac{Y_{noTG}(Z,\theta)}{N_{prim,noTG}}\right) \frac{1}{N_{TG}\epsilon(Z,\theta)\Delta\Omega}$$

- Number of primaries: evaluated after selection cuts on SC and BM
- Rescaling factor for **fragmentation trigger** events
- Small background statistics (only ~57000 events)
- **Total cross section**: integrated from angular cross section (0° 5.7°)

Analysis flow

- **Efficiencies** and **purities** calculated from the Monte Carlo simulations
- Purities applied **separately** for signal and background
- **Background subtraction** from a no target run
- Unfolding to solve angle mixing
- **Cross section** calculation (with **efficiencies**)

• Increase number of bins?

	$Z = \theta[^{\circ}]$	$\sigma \pm \Delta_{stat} \pm \Delta_{sys} [b \ sr^{-1}]$	Δ_{stat}/σ	Δ_{sys}/σ
	0 - 0.6	$110 \pm 13 \pm 5$	11.6%	4.3%
	0.6 - 1.2	$87\pm 6\pm 3$	7.2%	4%
	1.2 - 1.8	$65 \pm 3 \pm 2$	5.2%	3.1%
	1.8 - 2.4	$45 \pm 2 \pm 1$	4.7%	3.2%
	2 2.4 - 3	$34 \pm 1 \pm 2$	3.6%	4.4%
	3 - 3.6	$20\pm1\pm1$	4.2%	4.5%
	3.6 - 4.2	$14 \pm 1 \pm 0.5$	4.2%	3.5%
·	4.2 - 4.8	$9 \pm 0.4 \pm 0.3$	4.3%	3.5%
	4.8 - 5.7	$5\pm0.3\pm0.7$	5%	14%
	0 - 0.6	$9 \pm 4 \pm 0.3$	40%	3.7%
	0.6 - 1.2	$11 \pm 2 \pm 0.4$	15%	4.2%
	$3 \ 1.2 - 1.8$	$6\pm1\pm0.2$	17%	3.1%
	1.8 - 2.4	$5\pm0.5\pm0.2$	9%	3%
	2.4 - 5.7	$1\pm0.04\pm0.04$	5%	4.2%
-	0 - 0.6	$13\pm3\pm0.7$	20%	5.3%
	$4 \ 0.6 - 1.2$	$7 \pm 1.5 \pm 0.2$	21%	3.2%
	1.2 - 5.7	$1 \pm 0.1 \pm 0.03$	9%	3.5%
	0 - 0.6	$30 \pm 6 \pm 1$	20%	3.1%
	$5 \ 0.6 - 1.2$	$19 \pm 2 \pm 1$	10%	4.7%
	1.2 - 5.7	$1\pm0.1\pm0.05$	7%	4.3%
	0 - 0.6	$86 \pm 13 \pm 3$	15%	3%
	$6\ 0.6 - 1.2$	$52 \pm 3 \pm 2$	5.5%	4.3%
	1.2 - 5.7	$2\pm0.1\pm0.08$	5.6%	4.6%
	0 - 0.6	$160 \pm 15 \pm 6$	9%	3.9%
	$7 \ 0.6 - 1.2$	$42\pm3\pm3$	6.8%	7.5%
	1.2 - 5.7	$1 \pm 0.1 \pm 0.03$	13%	4.4%

27 May 2025

• Increase number of bins?

Ζ	$\theta[^{\circ}]$	$\sigma \pm \Delta_{stat} \pm \Delta_{sys} [\mathrm{b} \ \mathrm{sr}^{-1}]$	Δ_{stat}/σ	Δ_{sys}/σ
(0 - 0.6	$110 \pm 13 \pm 5$	11.6%	4.3%
· 0	6 - 1.2	$87\pm 6\pm 3$	7.2%	4%
1	2 - 1.8	$65 \pm 3 \pm 2$	5.2%	3.1%
1	8 - 2.4	$45 \pm 2 \pm 1$	4.7%	3.2%
2^{-2}	2.4 - 3	$34 \pm 1 \pm 2$	3.6%	4.4%
;	3 - 3.6	$20\pm1\pm1$	4.2%	4.5%
3	6 - 4.2	$14 \pm 1 \pm 0.5$	4.2%	3.5%
4	2 - 4.8	$9\pm0.4\pm0.3$	4.3%	3.5%
4	8 - 5.7	$5\pm0.3\pm0.7$	5%	14%
(0 - 0.6	$9 \pm 4 \pm 0.3$	40%	3.7%
0	6 - 1.2	$11 \pm 2 \pm 0.4$	15%	4.2%
$3 \ 1$	2 - 1.8	$6\pm1\pm0.2$	17%	3.1%
1	8 - 2.4	$5\pm0.5\pm0.2$	9%	3%
2	4 - 5.7	$1\pm0.04\pm0.04$	5%	4.2%
(0 - 0.6	$13\pm3\pm0.7$	20%	5.3%
$4 \ 0$.6 - 1.2	$7\pm1.5\pm0.2$	21%	3.2%
1	2 - 5.7	$1 \pm 0.1 \pm 0.03$	9%	3.5%
(0 - 0.6	$30 \pm 6 \pm 1$	20%	3.1%
$5 \ 0$.6 - 1.2	$19 \pm 2 \pm 1$	10%	4.7%
1	2 - 5.7	$1\pm0.1\pm0.05$	7%	4.3%
(0 - 0.6	$86 \pm 13 \pm 3$	15%	3%
60	.6 - 1.2	$52 \pm 3 \pm 2$	5.5%	4.3%
1	2 - 5.7	$2\pm0.1\pm0.08$	5.6%	4.6%
(0 - 0.6	$160\pm15\pm6$	9%	3.9%
$7 \ 0$.6 - 1.2	$42\pm3\pm3$	6.8%	7.5%
1	2 - 5.7	$1 \pm 0.1 \pm 0.03$	13%	4.4%

27 May 2025

- Increase number of bins? Some improvements helped:
 - Corrected some **shifts** in GSI2021 geometry
 - Better geometric transformation to measure the impact point of the beam on the target

7	0[0]	-1.0 1.0 $[h_{ac}-1]$	A /-	A /-
<u>_</u>	$\theta[1]$	$\sigma \pm \Delta_{stat} \pm \Delta_{sys}$ [b sr]	Δ_{stat}/σ	Δ_{sys}/σ
	0 - 0.6	$110\pm13\pm5$	11.6%	4.3%
'	0.6 - 1.2	$87\pm 6\pm 3$	7.2%	4%
	1.2 - 1.8	$65 \pm 3 \pm 2$	5.2%	3.1%
	1.8 - 2.4	$45 \pm 2 \pm 1$	4.7%	3.2%
2	2.4 - 3	$34 \pm 1 \pm 2$	3.6%	4.4%
	3 - 3.6	$20\pm1\pm1$	4.2%	4.5%
	3.6 - 4.2	$14 \pm 1 \pm 0.5$	4.2%	3.5%
	4.2 - 4.8	$9\pm0.4\pm0.3$	4.3%	3.5%
	4.8 - 5.7	$5\pm0.3\pm0.7$	5%	14%
	0 - 0.6	$9 \pm 4 \pm 0.3$	40%	3.7%
	0.6 - 1.2	$11 \pm 2 \pm 0.4$	15%	4.2%
3	1.2 - 1.8	$6\pm1\pm0.2$	17%	3.1%
	1.8 - 2.4	$5\pm0.5\pm0.2$	9%	3%
	2.4 - 5.7	$1\pm0.04\pm0.04$	5%	4.2%
	0 - 0.6	$13\pm3\pm0.7$	20%	5.3%
4	0.6 - 1.2	$7 \pm 1.5 \pm 0.2$	21%	3.2%
	1.2 - 5.7	$1\pm0.1\pm0.03$	9%	3.5%
	0 - 0.6	$30 \pm 6 \pm 1$	20%	3.1%
5	0.6 - 1.2	$19 \pm 2 \pm 1$	10%	4.7%
	1.2 - 5.7	$1\pm0.1\pm0.05$	7%	4.3%
	0 - 0.6	$86 \pm 13 \pm 3$	15%	3%
6	0.6 - 1.2	$52 \pm 3 \pm 2$	5.5%	4.3%
	1.2 - 5.7	$2\pm0.1\pm0.08$	5.6%	4.6%
	0 - 0.6	$160\pm15\pm6$	9%	3.9%
$\overline{7}$	0.6 - 1.2	$42\pm3\pm3$	6.8%	7.5%
	1.2 - 5.7	$1 \pm 0.1 \pm 0.03$	13%	4.4%

- Increase number of bins? Some improvements helped:
 - Corrected some **shifts** in GSI2021 geometry
 - Better geometric transformation to measure the impact point of the beam on the target

θ [°]

Z = 5

NEW results O + C

New binning

27 May 2025

3

2

5

θ [°]

MAECI - MOFFIITS Meeting

5

θ [°]

27 May 2025

Cross section for O+H

Li differential cross section

Data

 Systematic uncertainty accounts for reconstruction strategy (reconstructed MC vs true MC result) and stoichiometric subtraction

θ [°]

Cross section for O+H

27 May 2025

MAECI - MOFFIITS Meeting

Data

Stat. uncertainty

Sys. uncertainty

5

θ [°]

27 May 2025

YIELDS WITHOUT CORRECTIONS

β distributions (MC)

TRUE YIELDS

- β distributions according to TOF resolution
- Raw yields → need to be corrected for purity and background subtraction

Yields corrected for purity and bkg subtraction

β distributions: O+C (MC)

27 May 2025

27 May 2025

E_{kin} distributions

- E_{kin} distribution using mass of a single isotope: valid approximation for some isotopes (⁴He, ¹²C, ¹⁴N)
- Necessary for inverse kinematics

Yields corrected for purity and bkg subtraction

E_{kin} distributions: O+C (MC)

27 May 2025

Yields corrected for purity and bkg subtraction E_{kin} distributions: O+C₂H₄(MC)

27 May 2025

Inverse kinematics

Steps:

- E_{kin} distribution using mass of a single isotope (for elements with a particularly abudant isotope, like¹²C and ¹⁴N)
- Calculate C+O and C₂H₄+O and subtract

Inverse kinematics

Steps:

- E_{kin} distribution using mass of a single isotope (for elements with a particularly abudant isotope, like¹²C and ¹⁴N)
- Calculate C+O and C₂H₄+O and subtract
- Some considerations in the next slides

Angle limitations for He

- TW acceptance within 5.7° → in inverse kinematics some fragments are lost at higher energy
- Relevant for He

27 May 2025

calculated with MC truth C+O Z=2

Inverse kinematics energy cross section

With cut in angleWithout cut in angle

Angle limitations for He

- TW acceptance within 5.7° → in inverse kinematics some fragments are lost at higher energy
- Relevant for He

27 May 2025

• Not so relevant for other Z

With cut in angleWithout cut in angle

Mass fixed vs true mass

- No mass reconstruction possible → use the mass of the most abundant isotope
- Used mass of ${}^{4}\text{He}$, ${}^{12}\text{C}$ and ${}^{14}\text{N}$

Inverse kinematics energy cross section calculated with MC truth C+O

With mass of single isotopeWith true mass

27 May 2025

MC inverse kinematics (MC truth) vs fluka H + O

27 May 2025

Conclusions and next steps

- Correctly calculate reconstructed cross section in kinetic energy in inverse kinematics for the MC sample for C+O and C₂H₄+O with also background subtraction for the chosen isotopes
- Subtract the two cross sections to obtain H+O
- Apply same steps to data

Thank you for your attention !

Back-up slides

First reconstruction attempt (MC reco) C+O

27 May 2025

Comparison with nuclear models

- FLUKA
- Geant4 hadronic models: •
 - Binary Ion Cascade (BIC)
 - Quantum Molecular Dynamics (QMD)
 - Liège Intranuclear Cascade (INCL++)

27 May 2025

MAECI - MOFFIITS Meeting

5

θ[°]

5

θ [°]

Literature comparison

27 May 2025

MC simulation: unfolding

- Monte Carlo simulations used to extract purities and efficiencies
- Unfolding to solve angle mixing

Cross section measurement

Charge identification

 Data for 400 MeV/u beam on a 1 cm thick target

27 May 2025

MAIE EOOM OF HIB Sr Mieeting