

VTX Detector and Cross Section Measurements at GSI2021

Luana, Marco

This work investigates whether it is possible to **include the VTX detector** for cross section measurements, despite the **high pile-up conditions** (~70% of the events have PileUp) and the use of **default thresholds** during GSI2021.

The final results will be compared to the XS measured with the SC+BM+TW analysis of GSI2021

Angular differential and elemental fragmentation cross sections of a 400 MeV/nucleon ¹⁶O beam on a graphite target with the FOOT experiment

Can the VTX be used for Cross Section measurement at **GSI2021?**

Detectors used: **ST + BM + VTX + TW**

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(Z,\theta) = \frac{Y(Z,\theta)}{N_{\mathrm{prim}} \cdot N_{\mathrm{TG}} \cdot \varepsilon(Z,\theta) \cdot \Delta\Omega}$$

- Y (Z, θ) corresponds to the number of reconstructed fragments with charge Z at a given angle θ
- Nprim is the number of primary particles incident on the target and within the acceptance of the VTX
- **NTG** is the number of interaction centers in the target per unit area
- $\epsilon(Z, \theta)$ is the efficiency
- $\Delta \Omega$ is the width of the solid angle bin

Analysis strategy

Given an event with only 1BM track in VTX acceptance (a primary):

- Discard events with **Z** = 8 detected in TW
- Check for the presence of a **fragmentation vertex** in the VTX
- If a vertex is found \rightarrow **project VTX tracks** onto the TW plane
- Search for a **TW point within 2 cm** of the projected track position

Yield selection

Selection Cuts applied in the analysis

No BM match

High pile-up and detector resolution limits can cause mismatches.

Fragmentation vertexes discarded if Z=8 is found in TW

is due to **pile-up**.

Distance between BM track and fragmentation VTX

- all fragmentation VTX
- fragmentation VTX with no Z=8 TW point
- MC (no PileUp)

Selection Cuts applied in the analysis

If a **Z = 8** is detected in TW, it means that a **primary particle** reached the TW. Any fragmentation vertex found

Track–TW Point Distance < 2 cm

The reconstructed VTX tracks are projected onto the TW detector plane. For each projected track, the closest TW point is searched.

[cm]

 \rightarrow If the distance is less than 2 cm, the TW point is associated to that track.

Track-TW point distance distribution CS_dis_TrkVtxP Entries 2200 Mean Std Dev 2000 1800 1600 1400 1200 1000 800 600 400 200

Shared TW Point Between Two Tracks

If two VTX tracks projected onto the TW are matched with the same TW point, **both tracks and the TW point** are discarded.

This cut removes cases where two particles hit the same TW bar, causing the TW to reconstruct a single particle with a charge equal to the sum of the two, leading to misidentification.

MC study

Efficiency Evaluation:

Given an event with a fragmentation in the target (N_{true frag}): 1. Check whether the fragments are reconstructed by the VTX and associated to a

- fragmentation vertex (N_{reco VTX})
- 2. Verify how many of these VTX-reconstructed fragments cross the TW detector (N_{cross TW})
- 3. Among the crossing fragments, check how many are reconstructed as TW points (N_{reco TW})
- 4. Finally, for the reconstructed TW points check for a match between the VTX track and the TW point (N_{match_TW})

$$arepsilon_1(Z, heta) = rac{N_{
m reco_VT}}{N_{
m true}}$$

$$arepsilon_2(Z, heta) = rac{N_{ ext{cross_TW}}}{N_{ ext{reco_VTX}}}$$

$$arepsilon_{3}(Z, heta) = rac{N_{
m reco_TW}}{N_{
m cross_TW}}$$

$$arepsilon_4(Z, heta) = rac{N_{ ext{match_T}}}{N_{ ext{reco_TV}}}$$

Efficiency Evaluation:

Thus, the total efficiency is given by the ratio between the reconstructed fragments and the true fragments, which can be expressed in terms of the previously described efficiencies as:

$$arepsilon(Z, heta) = rac{N_{ ext{reco_frag}}}{N_{ ext{true_frag}}} = arepsilon_1(Z, heta) imes$$

 $imes arepsilon_2(Z, heta) imes arepsilon_3(Z, heta) imes arepsilon_4(Z, heta)$

MC Closure Test

Data

Data

Protons efficiency

- At CNAO2024, VTX efficiency for protons was measured

Protons efficiency

- At CNAO2024, VTX efficiency for protons was measured

- Use these measurements in the MC to recalculate $\varepsilon(Z, \theta)$
- for each proton, detection was determined probabilistically based on its kinetic energy and the measured efficiency.
- **Main limitation:** the measurements do not cover the full energy range of interest Use a linear fit up to 230 MeV; constant efficiency assumed above 230 MeV (value at 230 MeV).

Are there other issues?

- Could the higher pile-up level in data (absent in the MC) make fragmentation vertex reconstruction more difficult?
- Do residual misalignments in the data (absent in the MC) further degrade reconstruction performance?

Are we losing more fragmentation vertexes in data than in MC?

- Could the higher pile-up level in data (absent in the MC) make fragmentation vertex reconstruction more difficult?
- Do residual misalignments in the data (absent in the MC) further degrade reconstruction performance? Are we losing more fragmentation vertexes in data than in MC?

Idea: Analyze **not valid VTX** to identify missed fragmentation vertexes and possibly recover lost fragments.

Focused on events where:

- No primary fragments (Z = 8) are detected in TW
- No valid fragmentation vertex is reconstructed For these events, we project **single-track of not valid** vertexes onto the TW plane, and check if there is a match with 1 TW point.

Next steps

Use of not valid vertexes:

- by analyzing events with not valid vertex.
- Estimate the associated reconstruction efficiency.
- Assess if, with this addition, the cross section becomes compatible with the ST+BM+TW analyses.

Move to other data (like CNAO2022):

Lower pile-up conditions may improve vertex reconstruction and reduce ambiguities

• Study whether fragments of interest (currently lost due to pile-up and misalignment) can be recovered

1. No BM match

High pile-up and detector resolution limits can cause mismatches.

implying a primary particle reached TW \rightarrow the primary should be matched with the BM track.

Luana Testa

- Events observed where a fragmentation vertex is matched to the BM track, but the TW shows only a Z=8 point,

For these events two distances were studied:

- **Red:** Between TW point and the closest projection from **unmatched** (not valid) vertexes
- Blue: Between TW point and the closest projection from **BM-matched** fragmentation vertex

Track–TW Point Distance < 2 cm \bigstar

TW point is searched.

 \rightarrow If the distance is less than 2 cm, the TW point is associated to that track.

[cm]

Track-TW point distance distribution CS_dis_TrkVtxP Entries 2200 Mean Std Dev 2000 1800 1600 1400 1200 1000 🔄 800 400 200

The reconstructed VTX tracks are projected onto the TW detector plane. For each projected track, the closest

Efficiencies (considering p_eff)

MC Closure Test p_eff

MC Closure Test

reco vs reco+p_eff

Luana Testa

Come fai..SBAI 29

Using NIST tables of energy loss in silicon (ΔE):

- $\Delta E(He, Ek = 950 \text{ MeV}) \sim \Delta E(p, Ek = 35 \text{ MeV})$
- $\Delta E(He, Ek = 700 \text{ MeV}) \sim \Delta E(p, Ek = 27.5 \text{ MeV})$

<u>Problem</u>: we have no efficiency measurements for protons at such low energies. We would need to extrapolate from the linear fit.

 \rightarrow before applying the efficiency from the extrapolation, we test a constant 80% efficiency for He in MC. This is not a realistic efficiency, real measurements are needed, but it helps assess potential improvements

