

The new Vertex project

Sara Rabaglia, Eleuterio Spiriti, Sara Valentinetti, Mauro Villa, Roberto Zarrella

MAECI-MOFFIITS Meeting - 26-28 May 2025

ara Rabaglia -

Summary

- Overview of MIMOSIS-2 characteristics
- Tests on communication with the chip (I²C and register settings)
- Tests on the data read-out and deserialization
- Tests with the full set-up and the radioactive source
- New Vertex design

MIMOSIS-28 VS MIMOSIS-2

MIMOSIS-28 VS MIMOSIS-2

I²C protocol

Experimental Setup

Power Supply:

- Positive pin: +5 V
- Negative pin: 0 V (ground)

Experimental Setup

Conversion of LVDS signals to single-ended signals

DAQ Board \Rightarrow NEW version soon

Sara Rabaglia - 27/05/25

Experimental Setup

 $\begin{array}{l} \mathsf{FPGA} \\ (\mathsf{DE10STD}) \end{array} \Rightarrow \mathsf{Final \ setup \ includes \ a \ \mathsf{DE10}} \mathsf{Nano} \end{array}$

Registers to configure the chip

are set through the **I**²**C**

communication protocol

 Communication frequency: 400 kHz

• Many tests of register Read

and Write operations.

Registers to configure the chip

are set through the $\mathbf{I}^{2}\mathbf{C}$

communication protocol

 Communication frequency: 400 kHz

 Many tests of register Read and Write operations.

2 Working Configurations

PLL mode	Rescue Clock mode
Clock @40 MHz given by the FPGA	Clock @40 MHz given by the FPGA
Clock @320 MHz (for data read out) generated by the internal PLL	Clock @320 MHz given by an external generator (injected through a jumper on the proximity board)
Default Configuration	Configurable through register 27
Configurable Gain and Threshold to lock the PLL (implemented an automatic scan)	
Clock generated by the PLL very noisy	a - 27/05/25 11

2 Working Configurations

PLL mode	Rescue Clock mode
Clock @40 MHz given by the FPGA	Clock @40 MHz given by the FPGA
Clock @320 MHz (for data read out) generated by the internal PLL	Clock @320 MHz given by an external generator (injected through a jumper on the proximity board)
Default Configuration	Configurable through register 27
Configurable Gain and Threshold to lock the PLL (implemented an automatic scan)	
Clock generated by the PLL very noisy	lia - 27/05/25 12

Data Read-Out

Data read-out

Clock-out @160 MHz

 \rightarrow Data on the rising and falling edge

 \rightarrow Data read-out @320 MHz

- 8 Data read out lines (DOUT)
- 128 bits words
 - \rightarrow 1 word/400 ns [1 lines]
 - \rightarrow 1 word/100 ns [4 lines]
- Trigger \rightarrow saved the frames arrived in the settable window [- Δt , + Δt ']

- 1, 2, 4, 8 DOUTs:
- 1 and 2 lines: widely tested
- 4 lines: tested, but output signals become very noisy
- 8 lines: never tested, odd lines seem

broken

Deserializer

Deserializer

- Alignment between the clock and the data \rightarrow PHASE
- (more than 1 DOUT) Build the word correctly

Deserializer

fcaafcaafcaafcaafcaafcaafcaa
fcaafcaafcaafcaafcaafcaafcaa
fe00fe00fe00fe00fe00fe9ffe7efee0
fcaafcaafcaafcaafcaafcaa <u>7075ff00</u>
fcaafcaafcaafcaafcaafcaafcaa

134	fcaafcaafcaafcaafcaafcaafcaafcaa
135	fcaafcaafcaafcaafcaafcaafcaafcaa
136	fe00fe00fe00fe00fe00fe0fe0ffe7efee1
137	fcaafcaafcaafcaafcaafcaa <u>7070ff00</u>
138	fcaafcaafcaafcaafcaafcaafcaafcaa
139	fcaafcaafcaafcaafcaafcaafcaafcaa
140	fcaafcaafcaafcaafcaafcaafcaafcaa

Data stream:

- Idle words
- Frames:
 - Header (yellow)
 - Frame counter (green)
 - Trail (pink)
 - Hits (FDXX)

NEW Experimental Setup

Radioactive Source: ²⁰⁷Bi [105 kBq, β -]

External Trigger: scintillator + PMT

- Random Trigger
- NO radioactive source
- Possible value for the threshold: 0 1.5 V, step 6 mV (0 to 255)
- ~2000 events (arrived trigger) per threshold value
- 4 sub-matrices

- Random Trigger
- NO radioactive source
- Possible value for the threshold: 0 1.5 V, step 6 mV (0 to 255)
- \sim 2000 events (arrived trigger) per threshold value
- 4 sub-matrices
- Fit with a Sigmoid function to find the Pedestal (P) and the Sigma (σ):

$$S = 0.5 \cdot (\tanh\left(\frac{(x-P)}{\sigma}\right) + 1)$$

- Random Trigger
- NO radioactive source
- Possible value for the threshold: 0 1.5 V, step 6 mV (0 to 255)
- ~2000 events (arrived trigger) per threshold value
- 4 sub-matrices

- Random Trigger
- NO radioactive source
- Possible value for the threshold: 0 1.5 V, step 6 mV (0 to 255)
- \sim 2000 events (arrived trigger) per threshold value
- 4 sub-matrices

- Random Trigger
- NO radioactive source

Sub-Matrix A

Sub-Matrix B

- Possible value for the threshold: 0 1.5 V, step 6 mV (0 to 255)
- \sim 2000 events (arrived trigger) per threshold value

80 100 Threshold (Decimal Value)

• 4 sub-matrices

-11.61 mm

-11.61 mm

→ - 3.87 mm - →

←3.87 mm→

Random Trigger ٠

4 sub-matrices

Sub-Matrix A

Sub-Matrix B

٠

- NO radioactive source ٠
- Possible value for the threshold: 0 1.5 V, step 6 ٠ mV (0 to 255)
- \sim 2000 events (arrived trigger) per threshold value ٠

0.8

0.2

-11.61 mm

-11.61 mm-

→ ← 3.87 mm →

←3.87 mm→

Few runs over the night:

Few runs over the night:

 \rightarrow Good stability (no errors occur)

Few runs over the night:

- \rightarrow Good stability (no errors occur)
- \rightarrow more than 3M hit collected

Few runs over the night:

- \rightarrow Good stability (no errors occur)
- \rightarrow more than 3M hit collected
- \rightarrow Analysis of the results: COMING SOON!

New Vertex

Proximity Board

2 MIMOSIS-2 chips per each proximity board

4 Proximity boards

2 DAQ board per proximity board (tot = 8)

1 DE10-nano per proximity board (tot = 4)

Target Holder: Conceptual Design

Conceptual target holder can be especially designed for specific target

 \Rightarrow 3D printer

Target Holder: Board disposition

New Vertex details

- Overview of MIMOSIS-2 characteristics
- Tests on communication with the chip (I²C and register settings)
- Tests on the data read-out and deserialization
- Tests with the full set-up and the radioactive source
- New Vertex design

- Tests on communication with the chip (I²C and register settings)
- Tests on the data read-out and deserialization
- Tests with the full set-up and the radioactive source
- New Vertex design

- Tests on communication with the chip ______ Communication with the chip under (I²C and register settings)
- Tests on the data read-out and deserialization
- Tests with the full set-up and the radioactive source
- New Vertex design

- Overview of MIMOSIS-2 characteristics ——
- Tests on communication with the chip (I²C and register settings)
- Tests on the data read-out and _____
 deserialization
- Tests with the full set-up and the radioactive source
- New Vertex design

 \rightarrow Better performance than old Vertex

Communication with the chip under control

The data can be decoded, saved in binary files, and useful information can be extracted.

- Better performance than old Vertex Overview of MIMOSIS-2 characteristics
- Tests on communication with the chip (I²C and register settings)
- Tests on the data read-out and deserialization
- Tests with the full set-up and the radioactive source
- New Vertex design

Communication with the chip under control

The data can be decoded, saved in binary files, and useful information can be extracted.

Automatic threshold scan and run over the night

- Tests on communication with the chip (I²C and register settings)
- Tests on the data read-out and ______ deserialization
- Tests with the full set-up and the _____ radioactive source
- New Vertex design ______

- Communication with the chip under control
- The data can be decoded, saved in
 binary files, and useful information can be extracted.
- Automatic threshold scan and run over the night
- \longrightarrow Sketch of the future design

