

Belle II: stato e prospettive

Riunione CSN1 LNF 11/03/2025 G. Finocchiaro

Outline:

- Summary of 2024c Run Period
- Plans for 2025-26
- Latest physics results

Run 2024ab 29 Jan-1 Jul 2024 (155 days)

2022 performances reproduced:

e ⁺ and e ⁻ currents	1.5 A and 1.21 A			
β_y^*	0.9 mm			
peak luminosity	• 4.47 x 10 ³⁴ cm ⁻² s ⁻¹			

However:

- Frequent beam losses limited machine operation
 Sudden Beam Losses (SBL) happen with no precursor in less than 1 turn → dangerous for IR detectors (PXD kept off since April)
- Low injection efficiency

Priority given to machine studies: only 103 fb⁻¹ integrated for physics

Run 2024c 9 Oct-27 Dec 2024 (80 days)

e ⁺ and e ⁻ currents	1.7 A and 1.3 A
β_y^*	1 mm
peak luminosity	5.1 x 10 ³⁴ cm ⁻¹ s ⁻¹

- Sudden Beam Losses not solved, but new clues detected
- PXD kept off for safety
- Discharging RF-gun to be replaced
- HER emittance increased significantly
- High radiation levels but improved background collimators and threshold tuning.

The strategy....

Peak luminosity record on the last day of the run

	Old record	New record
Date and time	2022/06/22	2024/12/27
Luminosity	4.71x10 ³⁴ cm ⁻² s ⁻¹	$5.105 x 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
Specific luminosity	$6.95 x 10^{31} cm^{-2} s^{-1} m A^{-2}$	$5.83 x 10^{31} cm^{-2} s^{-1} m A^{-2}$
LER current	1460 mA	1632 mA
HER current	1145 mA	1259 mA

Priority <u>always</u> given to machine studies

11/03/2025

MDI group Leader: Hiro Nakayama

MDI group includes not only Belle II collaborators but also several experts from SuperKEKB vacuum, monitor, control, commissioning, injection, RF groups, as well as from LINAC group.

Sudden Beam Losses investigation

SBL tracking is made possible by a number of sensors added in 2024c:

11/03/2025

Belle II: stato e prospettive

Fighting Sudden Beam Losses (SBL)

i.e. losses which happen in 1 turn (10 $\mu s)$ or less

Dust from keramic electrodes in wiggler sections spotted as possible SBL source in 2024ab

15/50 beam pipes turned upside down during summer shutdown

In 2024c frequency of SBL with pressure burst in the «flipped» area increased with beam currents..... Definitely was <u>not</u> the right solution.

Black deposits due to vacuum sealant and small dust particles were found in the bellows of a region where many pressure bursts occurred.

EAL removal on SBL events

スコッチで研磨して黒いシミを除去

After removal

VACSEAL removal reduces SBL events accompanied by pressure bursts

Oct. 9 - Nov. 6 : #SBL/Beam Dose = 0.141 (1/Ah)

ACSEA

// Bellows chamber at Nikko wiggler section was exchanged on Nov. 6.

Nov. 6 - Dec. 27 : #SBL/Beam Dose = 0.043 (1/Ah) ← including not-removed flanges

VACSEAL

Belle II run time fraction

Belle II run stop statistics

Belle II sub-detectors generally stable

- Run stop reason:
 - TOP: 29.1%
 - beam abort 26.0%
 - CDC: 15.2%
 - SVD: 7.2%
 - KLM: 4.9%
 - ARICH: 3.6%
 - ECL: 3.3%
 - TRG: 2.9%.
 - HLT: 0.5%
 - others: 5.7%

run stop reason of physics runs

Run duration for physics runs:

- ~33mins/run on average. (vs. 52mins/run in 2024ab)
- 49% of runs are less than 10 minutes
- 83% of runs are less than 1 hour
- one run reached 8 hours (run1754)

beam abort SVD CDC TOP ARICH ECL KLM TRG HLT others

- Frequent TOP b2link lost and SVD errors occurred due to high injection background.
- SEU induced FEE errors are also main part of run stoppers by CDC, TOP.

Belle II Physics Analysis keeps competitive

- Journal papers statistics:
 - → 52 published papers + 3 accepted for publication;
 - → + 9 more submitted;
 - \rightarrow + ~20 more in the pipeline
- First results using 2024 data in Summer 2025.

Few highlights in the following slides, with an eye to results more «Belle2-specific»

- Four-photon final state, no vertex: only at Belle II!
- Branching ratio and direct ACP are fundamental inputs for α/ϕ_2 ;
- Continuum suppressed with dedicated BDT. Tag the flavour to measure the CP asymmetry. Extract signal from a 4D fit $\mathcal{B}(B^0 \to \pi^0 \pi^0) = (1.26 \pm 0.20 \pm 0.11) \times 10^{-6}$ $\mathcal{A}_{CP}(B^0 \to \pi^0 \pi^0) = 0.03 \pm 0.30 \pm 0.05$

Best precision on BR and same accuracy as WA on the CP asymmetry!

Pulls

5.2

5.22

5.24

0.4 0.5

 ΔE [GeV]

0.2 0.3

0.1

11/03/2025

Belle II: stato e prospettive

Candidates per 32 MeV

Pulls

Candidates per 32 MeV

Pulls

-0.3 -0.2

-0.1

25

5.26

5.28

 $M_{\rm hc} \, [{\rm GeV}/c^2]$

PhysRevD 111, 012011 (2025)

CPV in $B^0 \to J/\psi \pi^0$

- Color suppressed b → ccd tree-level decay
 → loop contribution plays a role
- Important input to correct for the penguin contamination in the B⁰ \rightarrow J/ ψ K⁰s (tree only: S=-sin 2 ϕ_1 ~ -0.71)

203±17 (J/ ψ →µµ) 186±16 (J/ ψ →ee)

Evidence of $B \rightarrow \tau \nu$

Arxiv: 2502.04885

Ideal process to measure V_{ub} , but helicity suppressed. Sensitive to BSM contributions.

- Hadronic tagging
- τ decay reconstruction in leptons, π , ρ
- Large missing energy
- Nothing else: no residual energy in calorimeter

Signal extracted by a fit to the 2-dim distribution of E_{extra} and M_{miss}^2

Evidence of $B \rightarrow \tau \nu$

Fit 94 ± 31 events: result in agreement with SM and previous measurements

CSN1 19/02/2025

Inelastic Dark Matter with a dark Higgs

Expanded dark sector with two dark matter states with a small mass splitting and a dark photon

 Δm_{χ} χ_1 is stable, χ_2 is long-lived $m_{A'} > m_{\chi^1} + m_{\chi^2}$

• 4 tracks + missing Energy

A'

X1

- 2 displaced vertex: one pointing, one non-pointing
- Challenging for tracking and <u>trigger</u>
- Almost zero background

 $\boldsymbol{\alpha}_{\text{D}}\text{:}$ coupling strength between DM and A'

11/03/2025

Belle II: stato e prospettive

to be submitted to PRL

What next in 2025?

Increased electricity cost produce a reduction of the SuperKEKB yearly operation time that MEXT can guarantee: => 5 months for the next fiscal year is a reasonable expectation

SuperKEKB needs still a number of hardware works to be implemented to cure its present limitations

On the other hand a longer run durations is desirable to allow machine optimisation.

The Belle II Executive Board has recently approved the following plan for 2025-26:

	4	5	6	7	8	9	10	11	12	1	2	3
JFY2024		2024b						2024c			Shutdown ~10	months
JFY2025			Shutdov	wn ~10 months	<u> </u>		+	< 202	5c Winter	shutdown ~2 v	v <mark>eeks</mark> 202 ionths in total	6a ;
JFY2026	2026b?	<u>م</u>					ii possible					

<u>10 months shutdown</u> to implement all the HW works + 7/8 months continuous running

Plans:

- Next run period will be 2025c, starting October or November
 - Only 2 week winter break, transition into 2026ab (until ~ end of May?)
 - Path to PXD re-inclusion under discussion
- Accelerator:
 - Remove vacseal to avoid SBL
 - mitigate beam background/IR loss from SBL (e.g. collimator relocation, faster aborts)
- Detector:
 - Tsukuba Hall roof renovation
 - ARICH cooling work
 - mitigate SEU-related downtimes (SVD, CDC, TOP, DAQ)
 - work on accepting higher backgrounds (all)

Conclusions

- Run 2 started in 2024 showed some important machine instabilities which are being studied. A number of countermeasures are being implemented.
- A 10 months shutdown is planned in 2025 to allow all hardware works to be completed. <u>Run will restart</u> in <u>November 2025 for 8 months</u>.
- Belle II is getting the most out of Run 1 data sample, often surpassing the sensitivity of previous *B* factories, despite having a significantly smaller data set;
- SuperKEKB program is planned to continue beyond 2040, with a second long shutdown around 2032, up to integrate 30-50 ab⁻¹. A strategic collaboration with future e+e- accelerator R&D can be established
- Belle II detector upgrade project is progressing with R&D toward a TDR.

Backup slides

MDI important improvements in 2024c

1. Faster beam abort

- Additional abort sensors (CLAWS) installed to LER D6, D5
- Shorter abort delivery path to the LER abort kicker

2. SBL analysis utilizing BORs(Bunch Orbit Recorders) data

- Multiple BORs enable timing/phase analysis of SBL origin
- 3. Relaxed Belle II diamond abort threshold during injections
 - Smoother operation startup and reduced injection-aborts Thanks to new diamond DCU firmware.

5-10 µs faster beam abort

4. Collimator operations

- LER NLC (Non-Linear Collimator) put into action
- D02V1 orbit drift alarm implemented

5. Machine learning application to SuperKEKB operation

Automized injection parameter tuning based on Bayesian optimization

6. Beam background machine studies

- Dedicated single-beam BKG machine studies in Apr. and Oct.
- Detailed injection BKG simulation now available, dedicated machine studies for comparison

Belle II: stato e prospettive

Picoscope to monitor injection background

Pressure burst location

Backgrounds

- Storage and injection backgrounds started much higher than before Storage background improved to 2024b quality, injection background did not
- LER 2-bunch injection: second bunch is worse
- Flipped beam pipes \rightarrow higher pressure
- Non-linear collimator (NLC) use limited by Oho hall radiation levels
- More shielding and new NLC position for 2025c

Hadron ID (π , K, p) performance paper (CNS1 milestone 2025)

- Motivations: describe hadron ID at Belle II, with particular reference to what we achieved during Run1 data taking (2019-2022);
- We describe:
- → the sources of PID information and how they are combined into variables made available to analysts;
- → the software tools and data samples used to measure efficiencies and misID rates;
- how corrections and (systematic) uncertainties are derived;
- We show the performance in terms of K vs π and K vs p separation;
- We critically discuss problems encountered, mitigation strategies, and future developments;
- Target journal: EPJC;
- CWR1 ended on February 24th.

11/03/2025

Synergy with future colliders studies

- Beam-Beam simulation shows much higher specific luminosity
 - It is still unclear why experimental results are much smaller than the simulation.
 - Can simulation miss some important factors?
 - There should be hints to increase luminosity of SuperKEKB.
 - If we identify the cause of the reduction in the luminosity, measures can be taken to improve luminosity.
- Important issue not just for SuperKEKB, but for future colliders with nano-beam collision scheme.
- Currently working on establishing a framework for international collaboration with CERN, IHEP, etc. especially on Beam-Beam simulations.
 - Several researchers will join SuperKEKB beam-beam team for 1-2 years to solve the mystery of SuperKEKB.

Strong-Strong Beam-Beam simulation (D. Zhou)

11/03/2025

KEK accelerator R&D collaboration opportunities

International collaboration framework (existing)

- Multi-National Partnership Project (KEK MNPP)
 - R&D for high luminosity colliders (MNPP-01)
 - Partnership between KEK and INFN, CERN, CNRS/IN2P3, SLAC, IHEP-Beijing
 - Visa support, daily life support, etc.
- Europe-America-Japan Accelerator Development Exchange Program (EAJADE)
 - Exchanging accelerator scientists and experts between Europe, America (Canada and USA), and Japan
 - Exchange of ideas on R&D and implementation of future accelerators for particle physics
- US-Japan collaboration on High Energy Physics
 - R&D for SuperKEKB and the next generation high luminosity colliders
 - Development of the SuperKEKB Interaction Region Nb₃Sn Quadrupole Magnet
 - Development of superconducting magnets and the quadrupole field vibration measurement system for SuperKEKB upgrade
- And more (under consideration)
 - Professor S. Asai, Director General of KEK, have asked several accelerator laboratories, such as CERN, DESY, IHEP, to support SuperKEKB accelerator.

• We surely welcome international collaboration to improve performance of the SuperKEKB accelerators.

- We would be very grateful if you or your colleague could visit KEK and help us.
- We would appreciate your consideration of the following points.
 - We are facing an extreme shortage of human resources.
 - During operation period, commissioning staff are often pressed for time and it can be difficult to respond adequately. Therefore, we may have to decline visits for "educational purposes".

Sensors to find the origin of SBL events

- Loss Monitors
 - · Equipped with fast readout and provide chronological order of beam loss along the ring
 - Many LMs have been installed before LS1
- BORs
 - · Can observe earlier stage of beam orbit deviation, prior to the beam loss
 - Multiple LER BORs are installed from 2024, making timing/phase analysis possible
 - This provides new and unique insights into understanding the origin of SBL
- Fast beam size monitors are also important to detect possible beam size blowup just before the abort

11/03/2025