ASPIDES WP1- ASIC design and verification

ASPIDE prototype for Cherenkov detection

F. Licciulli – INFN Bari

Macro-pixel architecture

- quenching resistor Rq
- Parasitic capacitance Cq

SiPM:

 Number of ucells (N) depends on the Cq/Cd and the required vertical height (H)

ReadOut Electronics: designed to measure the ToA and number of fired micro-cells by means of the ToT

When a ucell fires it produces at the SiPM output a very fast voltage step followed by the recovery tail.

The step amplitude depends on:

- SiPM over-voltage
- Cq, Cd and Cg
- SiPM size

The idea is to control the Cq/Cd ratio and the SiPM size (N, Cg) in order to have a step that can be directly used to mark the arrival time without using any amplifier.

Macro-pixel simulation with 1 micro-cell firing

SiPM response – zoom on the initial part

SiPM response initial value vs Cq/Cd ration

Simulation conditions: Cd = 100 fF, Rq = 200 kOhm, N = 100, Cg = 3 pF, Q0 = 150 fC, Ri = 150 kOhm

SiPM architecture

- HALF MODULE: macro-pixels can be horizontally abutted in order to realize an array of the required length, at the bottom of the ROE line the TDC + digital section can be placed.
- FULL MODULE: mirroring the HALF MODULE respect to the x axis the whole SiPM is obtained

FULL MODULE

ReadOut Electronics

Input stage:

- Provides the equivalent small signal resistance to read the SiPM
- Controls the SiPM bias for a fine adjustment of the SiPM gain
- Performs the discharge at constant current of the input node (SiPM anode) in order to measure the number of detected photons (ToT)

Fast comparator:

 Produces an output pulse whose rising edge marks the arrival time of the incoming event and whose duration is proportional to the number of detected photons.

Input Stage architecture

To be understood if also this branch must be switched off during the hold phase Digital inputs:

- HOLD: when the rising edge is detected the input transistor branch is opened, charge is integrated at input node
- TOT: enables the discharge at constant current

Input transistor:

- Provides the equivalent input resistance
- Controls the SiPM bias

Switch:

- ON: normal operation
- OFF: hold and constant current discharge

Fast comparator architecture

Simulation: transient time – no ToT

ToT not active - Equivalent input resistance has been chosen in order to recover in about 500 ns Simulation conditions: Cd = 100 fF, Cq = 40 fF, Rq = 200 kOhm, N = 90, Cg = 3 pF, Q0 = 150 fC, Ri = 150 kOhm

Simulation: transient time – ToT for 1 - 5 phe

ToT active – measurement for input event from 1 to 5 photons

Simulation: transient time – ToT for 1 – 50 phe

Comparator output for Nf from 1 to 50

Comparator output duration for Nf from 1 to 50

Simulation: transient noise - 1 phe

100 runs of transient noise

Simulation: transient noise - 1 phe – jitter ToA

Time jitter measured on the rising edge of comparator output (50% transition point)

Simulation: transient noise – 1 to 5 phe

Simulation: transient noise – 1 to 5 phe - ToA

ToA – time walk

ToA – time jitter