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Particle acceleration & cooling

Acceleration mechanisms:
● Fermi II acceleration: Scattering of particles with moving magnetic 

structure, energy gain ∼ β2 

 power-law distribution of particles→

● Fermi I acceleration (diffusive shock acceleration): Acceleration of 
particles when crossing shock fronts, energy gain ∼ β

 power-law distribution of particles with index 2→

● Magnetic reconnection: Breaking and reconnecting of mag. field lines 
converts Emag to Ekin d

 used to explain rapid variability→

 → Injected particle spectrum (typically a power law) 
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Particle acceleration & cooling

The injected spectrum is the altered by cooling mechanisms (and re-acceleration):

● Radiative losses: see radiation mechanisms
● Non-radiative losses:

● Expansion (adiabatic cooling):
 

● Escape losses: characterized by an escape time scale and/or fraction

γ̇ad=
1
3
V̇
V

t cool
ad =

γ
γ̇ =

R(t )
βexp c
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Particle acceleration & cooling

The injected spectrum is the altered by cooling mechanisms (and re-acceleration):

● Radiative losses: see radiation mechanisms
● Non-radiative losses:

● Expansion (adiabatic cooling):
 

● Escape losses: characterized by an escape time scale and/or fraction

 → Steady state (typically a broken power law) 
or time evolving particle distribution

γ̇ad=
1
3
V̇
V

t cool
ad =

γ
γ̇ =

R(t )
βexp c
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Radiation mechanisms

Synchrotron emission
● Charged relativistic particles spiraling around mag field lines

 lower-energy photons (radio to X-rays)→
Credit: http://chandra.harvard.edu/resources/illustrations/x-
raysLight.html             
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Radiation mechanisms

Synchrotron emission
● Charged relativistic particles spiraling around mag field lines

 lower-energy photons (radio to X-rays)→
● Typical frequency:

● Synchrotron power:

● Cooling time scale:

νs∼γ2B

Psyn=
4
3
c σT (

me
m

)
2

β2γ2U B

Credit: http://chandra.harvard.edu/resources/illustrations/x-
raysLight.html             

U B=
B2

8 π

t cool∼
me
γ B2
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Radiation mechanisms

Synchrotron emission
● Charged relativistic particles spiraling around mag field lines

 lower-energy photons (radio to X-rays)→
● Typical frequency:

● Synchrotron power:

● Cooling time scale:

● Power law of e (index p)  power law of photons (→ Γ)

νs∼γ2B

Psyn=
4
3
c σT (

me
m

)
2

β2γ2U B

t cool∼
me
γ B2

Credit: http://chandra.harvard.edu/resources/illustrations/x-
raysLight.html             

Credit: Frank Rieger, HEAS lecturesΓ=
p−1
2

U B=
B2

8 π
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Radiation mechanisms

Inverse Compton emission
● Upscattering of low-energy photons

 high-energy photons (X-rays/gamma-rays)→
Credit: http://chandra.harvard.edu/resources/illustrations/x-
raysLight.html             
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Radiation mechanisms

Inverse Compton emission
● Upscattering of low-energy photons

 high-energy photons (X-rays/gamma-rays)→

● Photon target fields:
● Synchrotron photons (SSC)
● Cosmic microwave background
● AGN components: Dusty torus, Accretion disk, broad line region

● Power

Credit: http://chandra.harvard.edu/resources/illustrations/x-
raysLight.html             

P IC=
4
3 c σT β

2γ2U rad
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Radiation mechanisms

Inverse Compton emission
● Thomson regime
● Klein Nishina regime

decreases scattering cross section Credit: http://chandra.harvard.edu/resources/illustrations/x-
raysLight.html             

h ν≪m ec
2

h ν≫m ec
2
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Radiation mechanisms

Inverse Compton emission
● Thomson regime
● Klein Nishina regime

decreases scattering cross section

● Energy gain:                           Thomson

                                                          Klein Nishina

● Cooling time scale:                                        Thomson

                                                   Klein Nishina

Credit: http://chandra.harvard.edu/resources/illustrations/x-
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t cool∼
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Δ ν∼γ
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Radiation mechanisms

Inverse Compton emission
● Thomson regime
● Klein Nishina regime

decreases scattering cross section

● Energy gain:                           Thomson

                                                          Klein Nishina

● Cooling time scale:                                        Thomson

                                                   Klein Nishina

● Spectral index:                                       

Credit: http://chandra.harvard.edu/resources/illustrations/x-
raysLight.html             

h ν≪m ec
2

h ν≫m ec
2

t cool∼
1

γU radFKN

FKN≈1

FKN≪1

Δ ν∼γ2

Δ ν∼γ

Γ IC∼Γsyn
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Radiation mechanisms

Bremsstrahlung
● Acceleration of electrons in the Coloumbfield of nuclei

 Emission of high-energy photons (X-rays/gamma)→
Credit: http://chandra.harvard.edu/resources/illustrations/x-
raysLight.html             
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Radiation mechanisms

Bremsstrahlung
● Acceleration of electrons in the Coloumbfield of nuclei

 Emission of high-energy photons (X-rays/gamma)→

● Power:                  (non-relativistic) 

different for relativistic or thermal cases but always proportional to Z

● Cooling time:  

Credit: http://chandra.harvard.edu/resources/illustrations/x-
raysLight.html             

P∼Z2 N v

t cool∼10
10 √(T )
N

years
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Leptonic models

AGNs & 
GRBs:

Credit: ApJL 815 L22  (2015)

Crab & other galactic 
sources:

Credit: Nature volume 575, pages 459–463 (2019)

Credit: JHEAP, Volume 1, p. 31-62 (2014)

Credit: MNRAS, 497, 3, P. 3734–3745 (2020)
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Radiation mechanisms

Proton-proton
● Accelerated protons interact with ambient medium



Lea Heckmann 28 - 05 - 2025

Radiation mechanisms

Proton-proton
● Accelerated protons interact with ambient medium
● Main channels:



Lea Heckmann 28 - 05 - 2025

Radiation mechanisms

Proton-proton
● Accelerated protons interact with ambient medium
● Main channels:

● π0 decay shows up in gamma-rays

Credit: https://libgamera.github.io/GAMERA/docs/radiation_modeling.html
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Radiation mechanisms

Proton-photon
● Accelerated protons interacting with photon fields
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Proton-photon
● Accelerated protons interacting with photon fields

Credit: http://www.physics.adelaide.edu.au/astrophysics/theory/interactions.html
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Radiation mechanisms

Proton-photon
● Accelerated protons interacting with photon fields:

● Produced electrons and photons subsequently develop cascades

Credit: http://www.physics.adelaide.edu.au/astrophysics/theory/interactions.html
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(Lepto)-hadronic models

AGNs
Galactic sources Credit: A&A, 695, A152 (2025)

Credit: A&A 671, A12 (2023)
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Propagation: boosting, absorption,...

Doppler boosting
● Enhances the flux when structures move relativistically towards us at an angle θ 

(e.g. AGN jets):
   

source frame  vs.  observer frame

 ν=δ ν '

dt=δ−1dt '

δ=
1

γ(1−βcos (θ))

Fν(ν)=δ(3+Γ)F 'ν (ν)

Credit: https://www.mpi-hd.mpg.de/HESS/pages/home/som/2018/04/
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Absorption and extinction:
● Synchrotron self-absorption (radio)

● Interstellar extinction (IR – UV)

● Interstellar medium grain absorption (X-rays)

Propagation: boosting, absorption,...
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Absorption and extinction:
● Synchrotron self-absorption (radio)

● Interstellar extinction (IR – UV)

● Interstellar medium grain absorption (X-rays)

● Gamma–gamma absorption (gamma rays)
● Extragalactic background light
● Internal photon fields, e.g. accretion disk photons

gamma-ray                                                                 e-

optical/UV                                                                  e+

Propagation: boosting, absorption,...

γ

γ
Credit: Gammapy
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Modelling astrophysical sources

Initial conditions:
Particle plasma,
(GR)-MHD, 
PIC simulations
…

Credit: IceCube/NASA

Particle 
acceleration & 
cooling

Radiation 
mechanisms

Propagation: 
absorption,
boosting,..

 →  γ distributions
 → altered
 γ distributions

Modelled
SEDs,
LCs,...

Data

Fitting

 → (relativistic)
particle 
distributions
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Public tools 

Python based/interface:
● Naima
● Jetset
● Agnpy
● AM3
● FLAREMODEL
● ….

C/C++
● GAMERA
● BHJet
● ...

Overview paper of some public codes:
● Galaxies 2022, 10(4), 85; 

https://doi.org/10.3390/galaxies10040085 

Hadronic code comparison paper:
● arXiv:2411.14218 
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Naima https://naima.readthedocs.io/en/latest/

● One-zone models
● Input: steady-state particle distributions
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● One-zone models
● Input: steady-state particle distributions

● Included processes:
● Leptonic: Synchrotron, Inverse Compton, 
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● Hadronic: p/μ-synchrotron (?), p-p interactions

● Not included:
● Boosting and absorption
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● Fitting:
● MCMC 
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Naima https://naima.readthedocs.io/en/latest/

Often used for galactic sources,
but can be adapted for jetted sources

● One-zone models
● Input: steady-state particle distributions

● Included processes:
● Leptonic: Synchrotron, Inverse Compton, 

Bremsstrahlung
● Hadronic: p/μ-synchrotron (?), p-p interactions

● Not included:
● Boosting and absorption
● p-γ interactions

● Fitting:
● MCMC
● Gammapy and sherpa wrapper

Credit: A&A 653, A152 (2021)
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Jetset https://jetset.readthedocs.io/en/1.3.0/

● One-zone or multiple zone models 
● But only independent zones (no interaction)

● Input: steady-state or injected particle distributions 
● Time evolution included now 
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Jetset https://jetset.readthedocs.io/en/1.3.0/

● One-zone or multiple zone models 
● But only independent zones (no interaction)

● Input: steady-state or injected particle distributions 
● Time evolution included now 

● Included processes:
● Leptonic: Synchrotron, Inverse Compton, 

Bremsstrahlung
● Hadronic: p/μ-synchrotron (?),  p-p interactions
● Boosting and EBL absorption, synch. Self-absorption

● Not included:
● Other γ-  γ absorption
● p-γ interactions

Often used for AGN 

● Fitting:
● Least-square, Minuit and/or MCMC
● Gammapy and sherpa wrapper

Credit: ApJS 266 37 (2023)
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Agnpy https://agnpy.readthedocs.io/en/latest/

● One-zone models
● Takes steady-state particle distributions as input
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● Boosting and EBL + other -γ γ absorption

 
● Not included:

● Bremsstrahlung
● p-γ interactions, p-p interactions
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● Fitting:
● Gammapy and sherpa wrapper
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Agnpy https://agnpy.readthedocs.io/en/latest/

● One-zone models
● Takes steady-state particle distributions as input

● Included processes:
● Leptonic: Synchrotron, Inverse Compton
● Hadronic: p-synchrotron
● Boosting and EBL + other -γ γ absorption

 
● Not included:

● Bremsstrahlung
● p-γ interactions, p-p interactions

Often used for AGN, especially FSRQs. 

● Fitting:
● Gammapy and sherpa wrapper

Credit: MNRAS, 535, 2, p. 1484–1506 (2024)
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AM3 https://am3.readthedocs.io/en/latest/index.html

● One-zone models
● Input: steady-state or injected particle distributions 

● Time evolution included
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AM3 https://am3.readthedocs.io/en/latest/index.html

● One-zone models
● Input: steady-state or injected particle distributions 

● Time evolution included

● Included processes:
● Leptonic: Synchrotron, Inverse Compton, 
● Hadronic: p/μ-synchrotron, p-p interactions,

 p-  γ  interactions
● Boosting, γ-  γ absorption, 

EBL absorption added externally

● Not included:
● Bremsstrahlung 
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AM3 https://am3.readthedocs.io/en/latest/index.html

● One-zone models
● Input: steady-state or injected particle distributions 

● Time evolution included

● Included processes:
● Leptonic: Synchrotron, Inverse Compton, 
● Hadronic: p/μ-synchrotron, p-p interactions,

 p-  γ  interactions
● Boosting, γ-  γ absorption, 

EBL absorption added externally

● Not included:
● Bremsstrahlung 

● Fitting:
● None
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AM3 https://am3.readthedocs.io/en/latest/index.html

Often used for AGN & GRBs

● Fitting:
● None

● One-zone models
● Input: steady-state or injected particle distributions 

● Time evolution included

● Included processes:
● Leptonic: Synchrotron, Inverse Compton, 
● Hadronic: p/μ-synchrotron, p-p interactions,

 p-  γ  interactions
● Boosting, γ-  γ absorption, 

EBL absorption added externally

● Not included:
● Bremsstrahlung 

Credit: ApJ 950 28 (2023)
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Summary
● Astrophysical modelling starts from relativistic plasma simulation  prediction of observed →

photon spectra and lightcurves
● Not possible currently to model all steps at ones

● Current most common approach:

1. Use simulations to learn about possible environments/particle distributions etc.

2. Computed photon spectra
● using assumption on particle distributions 
● using time-evolution codes

3. Fit to data  allows to constrain parameter space of the environments/particle →
distribution 

● Currently mostly done on flux points (SEDs)
● Better to do it on count data (dl3) itself  Gammapy   →

https://github.com/mireianievas/gammapy_mwl_workflow
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Thank you 
for 

your attention!
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