

Multiwavelength modelling

Lea Heckmann

Acceleration mechanisms:

 Fermi II acceleration: Scattering of particles with moving magnetic structure, energy gain ~ β² → power-law distribution of particles

Lea Heckmann

Acceleration mechanisms:

- Fermi II acceleration: Scattering of particles with moving magnetic structure, energy gain ~ β² → power-law distribution of particles
- Fermi I acceleration (diffusive shock acceleration): Acceleration of particles when crossing shock fronts, energy gain ~ β
 → power-law distribution of particles with index 2

Acceleration mechanisms:

- Fermi II acceleration: Scattering of particles with moving magnetic structure, energy gain ~ β² → power-law distribution of particles
- Fermi I acceleration (diffusive shock acceleration): Acceleration of particles when crossing shock fronts, energy gain ~ β
 → power-law distribution of particles with index 2
- Magnetic reconnection: Breaking and reconnecting of mag. field lines converts $\mathsf{E}_{\mathsf{mag}}$ to $\mathsf{E}_{\mathsf{kin}}$ d
 - \rightarrow used to explain rapid variability

Acceleration mechanisms:

- Fermi II acceleration: Scattering of particles with moving magnetic structure, energy gain ~ β² → power-law distribution of particles
- Fermi I acceleration (diffusive shock acceleration): Acceleration of particles when crossing shock fronts, energy gain ~ β
 → power-law distribution of particles with index 2
- Magnetic reconnection: Breaking and reconnecting of mag. field lines converts E_{mag} to E_{kin} d
 - \rightarrow used to explain rapid variability

 \rightarrow Injected particle spectrum (typically a power law)

The injected spectrum is the altered by <u>cooling mechanisms</u> (and re-acceleration):

The injected spectrum is the altered by <u>cooling mechanisms</u> (and re-acceleration):

• Radiative losses: see radiation mechanisms

The injected spectrum is the altered by <u>cooling mechanisms</u> (and re-acceleration):

- Radiative losses: see radiation mechanisms
- Non-radiative losses:
 - Expansion (adiabatic cooling): $\dot{y}_{ad} = \frac{1}{2} \frac{\dot{V}}{V}$

$$t_{cool}^{ad} = \frac{\gamma}{\dot{\gamma}} = \frac{R(t)}{\beta_{\exp}c}$$

• Escape losses: characterized by an escape time scale and/or fraction

The injected spectrum is the altered by <u>cooling mechanisms</u> (and re-acceleration):

- Radiative losses: see radiation mechanisms
- Non-radiative losses:
 - Expansion (adiabatic cooling): $\dot{y}_{ad} = \frac{1}{2} \frac{\dot{V}}{V}$

$$t_{cool}^{ad} = \frac{\gamma}{\dot{\gamma}} = \frac{R(t)}{\beta_{\exp}c}$$

• Escape losses: characterized by an escape time scale and/or fraction

→ Steady state (typically a broken power law) or time evolving particle distribution

Synchrotron emission

Charged relativistic particles spiraling around mag field lines
 → lower-energy photons (radio to X-rays)

Synchrotron emission

- Charged relativistic particles spiraling around mag field lines
 → lower-energy photons (radio to X-rays)
- Typical frequency: $v_{s} \sim y^{2}B$

• Synchrotron power: $P_{syn} = \frac{4}{3} c \sigma_T \left(\frac{m_e}{m}\right)^2 \beta^2 \gamma^2 U_B \qquad U_B = \frac{B^2}{8\pi}$

• Cooling time scale:
$$t_{cool} \sim \frac{m_e}{\gamma B^2}$$

Lea Heckmann

Radiation mechanisms

Synchrotron emission

- Charged relativistic particles spiraling around mag field lines
 → lower-energy photons (radio to X-rays)
- Typical frequency: $v_{s} \sim y^{2}B$
- Synchrotron power: $P_{syn} = \frac{4}{3} c \sigma_T \left(\frac{m_e}{m}\right)^2 \beta^2 \gamma^2 U_B \qquad U_B = \frac{B^2}{8 \pi}$ • Cooling time scale: $t_{cool} \sim \frac{m_e}{\gamma B^2}$
- Power law of e (index p) \rightarrow power law of photons (Γ)

 $\Gamma = \frac{p-1}{2}$

electron

Inverse Compton emission

Upscattering of low-energy photons
 → high-energy photons (X-rays/gamma-rays)

Inverse Compton emission

- Upscattering of low-energy photons
 → high-energy photons (X-rays/gamma-rays)
- Photon target fields:
 - Synchrotron photons (SSC)
 - Cosmic microwave background
 - AGN components: Dusty torus, Accretion disk, broad line region

Inverse Compton emission

Upscattering of low-energy photons
 → high-energy photons (X-rays/gamma-rays)

- Synchrotron photons (SSC)
- Cosmic microwave background
- AGN components: Dusty torus, Accretion disk, broad line region

• Power
$$P_{IC} = \frac{4}{3} c \sigma_T \beta^2 \gamma^2 U_{rad}$$

Inverse Compton emission

• Thomson regime

 $h v \ll m_e c^2$

 Klein Nishina regime decreases scattering cross section

Inverse Compton emission

- Thomson regime
- Klein Nishina regime decreases scattering cross section
- Energy gain: $\Delta v \sim y^2$ Thomson $\Delta v \sim y$ Klein Nishina

• Cooling time scale:

$$t_{cool} \sim \frac{1}{\gamma U_{rad} F_{KN}}$$
 $F_{KN} \ll 1$
Thomson
Klein Nishina

Inverse Compton emission

- Thomson regime
- Klein Nishina regime decreases scattering cross section
- Energy gain: $\Delta v \sim y^2$ Thomson

Credit: http://chandra.harvard.edu/resources/illustrations/x-raysLight.html

• Cooling time scale:

$$\Delta v \sim \gamma^{2}$$

 $\Delta v \sim \gamma$ Klein Nishina

$$F_{_{K\!N}}\!pprox\!1$$
 Thomson
Klein Nishina $F_{_{K\!N}}\!\ll\!1$

• Spectral index:

$$\Gamma_{IC} \sim \Gamma_{syn}$$

 $t_{cool} \sim \frac{1}{\gamma U_{rad} F_{KN}}$

Lea Heckmann

Bremsstrahlung

Acceleration of electrons in the Coloumbfield of nuclei
 → Emission of high-energy photons (X-rays/gamma)

Bremsstrahlung

Acceleration of electrons in the Coloumbfield of nuclei
 → Emission of high-energy photons (X-rays/gamma)

- Power: $P \sim Z^2 N v$ (non-relativistic) different for relativistic or thermal cases but always proportional to Z
- Cooling time:

Leptonic models

Lea Heckmann

[erg cm² s⁻¹]

Energy flux v F_v

^{28 - 05 - 2025}

Proton-proton

• Accelerated protons interact with ambient medium

Proton-proton

- Accelerated protons interact with ambient medium
- Main channels:

$$\begin{array}{rcl} p+p & \rightarrow & p+p+\pi^0 \\ p+p & \rightarrow & p+n+\pi^+ \\ p+p & \rightarrow & p+p+\pi^++\pi^- ... \end{array}$$

$$\begin{aligned} \pi^0 &\to & \gamma + \gamma \\ \pi^+ &\to & \mu^+ + \nu_\mu \quad \text{and} \quad \mu^+ \to e^+ + \bar{\nu}_\mu + \nu_e \\ \pi^- &\to & \mu^- + \bar{\nu}_\mu \quad \text{and} \quad \mu^- \to e^- + \nu_\mu + \bar{\nu}_e \end{aligned}$$

Proton-proton

- Accelerated protons interact with ambient medium
- Main channels:

$$\begin{array}{rcl} p+p & \rightarrow & p+p+\pi^0 \\ p+p & \rightarrow & p+n+\pi^+ \\ p+p & \rightarrow & p+p+\pi^++\pi^- ... \end{array}$$

$$\begin{aligned} \pi^0 &\to & \gamma + \gamma \\ \pi^+ &\to & \mu^+ + \nu_\mu \quad \text{and} \quad \mu^+ \to e^+ + \bar{\nu}_\mu + \nu_e \\ \pi^- &\to & \mu^- + \bar{\nu}_\mu \quad \text{and} \quad \mu^- \to e^- + \nu_\mu + \bar{\nu}_e \end{aligned}$$

• π^o decay shows up in gamma-rays

Credit: https://libgamera.github.io/GAMERA/docs/radiation_modeling.html

28 - 05 - 2025

Proton-photon

• Accelerated protons interacting with photon fields

Proton-photon

• Accelerated protons interacting with photon fields

Credit: http://www.physics.adelaide.edu.au/astrophysics/theory/interactions.html

Proton-photon

• Accelerated protons interacting with photon fields:

Credit: http://www.physics.adelaide.edu.au/astrophysics/theory/interactions.html

• Produced electrons and photons subsequently develop cascades

(Lepto)-hadronic models

AGNs

Propagation: boosting, absorption,...

Doppler boosting

- Enhances the flux when structures move relativistically towards us at an angle θ (e.g. AGN jets):

Credit: https://www.mpi-hd.mpg.de/HESS/pages/home/som/2018/04/

Lea Heckmann

28 - 05 - 2025

Propagation: boosting, absorption,...

Absorption and extinction:

- Synchrotron self-absorption (radio)
- Interstellar extinction (IR UV)
- Interstellar medium grain absorption (X-rays)

Propagation: boosting, absorption,...

<u>Absorption and extinction:</u>

- Synchrotron self-absorption (radio)
- Interstellar extinction (IR UV)
- Interstellar medium grain absorption (X-rays)
- Gamma-gamma absorption (gamma rays)
 - Extragalactic background light
 - Internal photon fields, e.g. accretion disk photons

Lea Heckmann

28 - 05 - 2025

Public tools

<u>Python based/interface:</u>

- Naima
- Jetset
- Agnpy
- AM3
- FLAREMODEL
-

<u>C/C++</u>

- GAMERA
- BHJet
- ...

Public tools

Python based/interface:

- Naima
- Jetset
- Agnpy
- AM3
- FLAREMODEL
-

<u>C/C++</u>

- GAMERA
- BHJet
- ...

Public tools

Python based/interface:

- Naima
- Jetset
- Agnpy
- AM3
- FLAREMODEL
-

<u>C/C++</u>

- GAMERA
- BHJet
- ...

Lea Heckmann

Overview paper of some public codes:

 Galaxies 2022, 10(4), 85; https://doi.org/10.3390/galaxies10040085

Hadronic code comparison paper:

• arXiv:2411.14218

28 - 05 - 2025

- One-zone models
- Input: steady-state particle distributions

- One-zone models
- Input: steady-state particle distributions
- Included processes:
 - Leptonic: Synchrotron, Inverse Compton, Bremsstrahlung
 - Hadronic: p/µ-synchrotron (?), p-p interactions
- Not included:
 - Boosting and absorption
 - p-γ interactions

- One-zone models
- Input: steady-state particle distributions
- Included processes:
 - Leptonic: Synchrotron, Inverse Compton, Bremsstrahlung
 - Hadronic: p/μ -synchrotron (?), p-p interactions
- Not included:
 - Boosting and absorption
 - p-γ interactions

- Fitting:
 - MCMC
 - Gammapy and sherpa wrapper

- One-zone models
- Input: steady-state particle distributions
- Included processes:
 - Leptonic: Synchrotron, Inverse Compton, Bremsstrahlung
 - Hadronic: p/µ-synchrotron (?), p-p interactions
- Not included:
 - Boosting and absorption
 - p-γ interactions

- Fitting:
 - MCMC
 - Gammapy and sherpa wrapper

Lea Heckmann

- One-zone or multiple zone models
 - But only independent zones (no interaction)
- Input: steady-state or injected particle distributions
 - Time evolution included now

- One-zone or multiple zone models
 - But only independent zones (no interaction)
- Input: steady-state or injected particle distributions
 - Time evolution included now
- Included processes:
 - Leptonic: Synchrotron, Inverse Compton, Bremsstrahlung
 - Hadronic: p/μ -synchrotron (?), p-p interactions
 - Boosting and EBL absorption, synch. Self-absorption
- Not included:
 - Other γ - γ absorption
 - $p-\gamma$ interactions

- One-zone or multiple zone models
 - But only independent zones (no interaction)
- Input: steady-state or injected particle distributions
 - Time evolution included now
- Included processes:
 - Leptonic: Synchrotron, Inverse Compton, Bremsstrahlung
 - Hadronic: p/μ -synchrotron (?), p-p interactions
 - Boosting and EBL absorption, synch. Self-absorption
- Not included:
 - Other γ - γ absorption
 - $p-\gamma$ interactions

- Fitting:
 - Least-square, Minuit and/or MCMC
 - Gammapy and sherpa wrapper

- One-zone or multiple zone models
 - But only independent zones (no interaction)
- Input: steady-state or injected particle distributions
 - Time evolution included now
- Included processes:
 - Leptonic: Synchrotron, Inverse Compton, Bremsstrahlung
 - Hadronic: p/μ -synchrotron (?), p-p interactions
 - Boosting and EBL absorption, synch. Self-absorption
- Not included:
 - Other γ - γ absorption
 - $p-\gamma$ interactions

• Fitting:

- Least-square, Minuit and/or MCMC
- Gammapy and sherpa wrapper

Lea Heckmann

28 - 05 - 2025

$Agnpy {\scriptstyle https://agnpy.readthedocs.io/en/latest/}$

- One-zone models
- Takes steady-state particle distributions as input

Agnpy https://agnpy.readthedocs.io/en/latest/

- One-zone models
- Takes steady-state particle distributions as input
- Included processes:
 - Leptonic: Synchrotron, Inverse Compton
 - Hadronic: p-synchrotron
 - Boosting and EBL + other $\gamma\text{-}\gamma$ absorption
- Not included:
 - Bremsstrahlung
 - $p-\gamma$ interactions, p-p interactions

Agnpy https://agnpy.readthedocs.io/en/latest/

- One-zone models
- Takes steady-state particle distributions as input
- Included processes:
 - Leptonic: Synchrotron, Inverse Compton
 - Hadronic: p-synchrotron
 - Boosting and EBL + other $\gamma\text{-}\gamma$ absorption
- Not included:
 - Bremsstrahlung
 - $p-\gamma$ interactions, p-p interactions

- Fitting:
 - Gammapy and sherpa wrapper

Agnpy https://agnpy.readthedocs.io/en/latest/

- One-zone models
- Takes steady-state particle distributions as input
- Included processes:
 - Leptonic: Synchrotron, Inverse Compton
 - Hadronic: p-synchrotron
 - Boosting and EBL + other $\gamma\text{-}\gamma$ absorption
- Not included:
 - Bremsstrahlung
 - $p-\gamma$ interactions, p-p interactions

- Fitting:
 - Gammapy and sherpa wrapper

Lea Heckmann

28 - 05 - 2025

(b) CTA 102

- One-zone models
- Input: steady-state or injected particle distributions
 - Time evolution included

- One-zone models
- Input: steady-state or injected particle distributions
 - Time evolution included
- Included processes:
 - Leptonic: Synchrotron, Inverse Compton,
 - Hadronic: p/μ -synchrotron, p-p interactions, p- γ interactions
 - Boosting, γ-γ absorption,
 EBL absorption added externally
- Not included:
 - Bremsstrahlung

- One-zone models
- Input: steady-state or injected particle distributions
 - Time evolution included
- Included processes:
 - Leptonic: Synchrotron, Inverse Compton,
 - Hadronic: p/μ -synchrotron, p-p interactions, p- γ interactions
 - Boosting, γ-γ absorption,
 EBL absorption added externally
- Not included:
 - Bremsstrahlung

Fitting:None

- One-zone models
- Input: steady-state or injected particle distributions
 - Time evolution included
- Included processes:
 - Leptonic: Synchrotron, Inverse Compton,
 - Hadronic: p/μ-synchrotron, p-p interactions, p-γ interactions
 - Boosting, γ-γ absorption,
 EBL absorption added externally
- Not included:

• Bremsstrahlung

Credit: ApJ 950 28 (2023)

- Astrophysical modelling starts from relativistic plasma simulation → prediction of observed photon spectra and lightcurves
 - Not possible currently to model all steps at ones

- Astrophysical modelling starts from relativistic plasma simulation → prediction of observed photon spectra and lightcurves
 - Not possible currently to model all steps at ones
- Current most common approach:
 - 1. Use simulations to learn about possible environments/particle distributions etc.

- Astrophysical modelling starts from relativistic plasma simulation → prediction of observed photon spectra and lightcurves
 - Not possible currently to model all steps at ones
- Current most common approach:
 - 1. Use simulations to learn about possible environments/particle distributions etc.
 - 2. Computed photon spectra
 - using assumption on particle distributions
 - using time-evolution codes

- Astrophysical modelling starts from relativistic plasma simulation → prediction of observed photon spectra and lightcurves
 - Not possible currently to model all steps at ones
- Current most common approach:
 - 1. Use simulations to learn about possible environments/particle distributions etc.
 - 2. Computed photon spectra
 - using assumption on particle distributions
 - using time-evolution codes
 - 3. Fit to data \rightarrow allows to constrain parameter space of the environments/particle distribution

- Astrophysical modelling starts from relativistic plasma simulation → prediction of observed photon spectra and lightcurves
 - Not possible currently to model all steps at ones
- Current most common approach:
 - 1. Use simulations to learn about possible environments/particle distributions etc.
 - 2. Computed photon spectra
 - using assumption on particle distributions
 - using time-evolution codes
 - 3. Fit to data \rightarrow allows to constrain parameter space of the environments/particle distribution
 - Currently mostly done on flux points (SEDs)
 - Better to do it on count data (dl3) itself → Gammapy https://github.com/mireianievas/gammapy_mwl_workflow

Lea Heckmann

