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* Magnetic reconnection: Breaking and reconnecting of mag. field lines
converts Emag to Exin d
— used to explain rapid variability

[ — Injected particle spectrum (typically a power law) ]
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The injected spectrum is the altered by cooling mechanisms (and re-acceleration):

* Radiative losses: see radiation mechanisms

* Non-radiative losses:

* Expansion (adiabatic cooling): y-ad=%%
R(t)
" Bup€

* Escape losses: characterized by an escape time scale and/or fraction
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— Steady state (typically a broken power law)
or time evolving particle distribution
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Radiation mechanisms

Synchrotron emission

* Charged relativistic particles spiraling around mag field lines
— lower-energy photons (radio to X-rays)

Typical frequency:
Synchrotron power:

Cooling time scale:
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low-energy x-ray [
hoton |
Inverse Compton emission S

* Upsco’r’rering of |ow—energy pho’rons ‘_ ol -
— high-energy photons (X-rays/gamma-rays) e

* Photon target fields:
* Synchrotron photons (SSC)
* Cosmic microwave background

* AGN components: Dusty torus, Accretion disk, broad line region

* Power
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Radiation mechanisms

low-energy x-ray 1
hoton [

Inverse Compton emission

* Thomson regime

(:T’ . __ *
hv<m . C2 - electron

Klein Nishina regime
, hv>m ql_z,
decreases scattering cross se¢tion

* Energy gain: Av~y? Thomson
Av~y Klein Nishina
* Cooling time scale: & ~1 Thomson
1 KN
Lcool YU . Fry ot Klein Nishina

Spectral index:
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Radiation mechanisms

X-ray

electron

Bremsstrahlung -
* Acceleration of electrons in the Coloumbfield of nuclei m

— Emission of high-energy photons (X-rays/gamma)

* Power: P~Z’Nv (non-relativistic)
different for relativistic or thermal cases but always proportional to Z

* Cooling time: )
tcool~1010 N

years



Leptonic models

AGNs &
GRBs:
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Radiation mechanisms

Proton-proton

* Accelerated protons interact with ambient medium

* Main channels:
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Radiation mechanisms

Proton-photon

* Accelerated protons interacting with photon fields
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Radiation mechanisms

Proton-photon

* Accelerated protons interacting with photon fields:
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* Produced electrons and photons subsequently develop cascades




Lepto)-hadronic models
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Initial conditions: Particle /Propaga’rion:\
Particle plasma, acceleration & absorption,
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PIC simulations \_ .




Propagation: boosting, absorption,...

Doppler boosting

* Enhances the flux when structures move relativistically towards us at an angle 6

(e.g. AGN jets):

source frame vs. observer frame
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Absorption and extinction:

* Synchrotron self-absorption (radio)
* Interstellar extinction (IR - UV)
* Interstellar medium grain absorption (X-rays)

* Gamma-gamma absorption (gamma rays)
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* Extragalactic background light
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Public tools

Python based/interface:

* Naima

e Jetset

* Agnpy

* AM3

* FLAREMODEL

C/C++
« GAMERA

* BHlet

naima
o ()
e Q)
3D

Overview paper of some public codes:

* Galaxies 2022, 10(4), 85;
https://doi.org/10.3390/galaxies10040085

Hadronic code comparison paper:

* arXiv:2411.14218
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N aimd https://naima.readthedocs.io/en/latest/

* One-zone models * Fitting:

Input: steady-state particle distributions * MCMC
* Gammapy and sherpa wrapper

* Included processes:
* Leptonic: Synchrotron, Inverse Compton,
Bremsstrahlun .
J , Often used for galactic sources,
. M . —_ —_— 1 1 .
Hadronic: p/p-synchrotron (7), p-p interactions but can be adapted for jetted sources
* Not included: | I T
* Boosting and absorption pl
* p-Y interaction = 102
p Y S ?.m — Hadronic model
.%i —— Leptonic model
= 4 HESS.
~.>f & Fermi-LAT
=
107 HESS J1702-420B
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* Input: steady-state or injected particle distributions
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* One-zone or multiple zone models * Fitting:

* But only independent zones (no interaction) * Least-square, Minuit and/or MCMC
* Gammapy and sherpa wrapper

* Input: steady-state or injected particle distributions

* Time evolution included now

[ Often used for AGN J
* Included processes:
* Leptonic: Synchrotron, Inverse Compton,

Bremsstrahlung 1070, —
* Hadronic: p/p-synchrotron (?), p-p interactions | t e

* Boosting and EBL absorption, synch. Self-absorption
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Ag N py https://agnpy.readthedocs.io/en/latest/

* One-zone models * Fitting:
* Takes steady-state particle distributions as input * Gammapy and sherpa wrapper

Included processes:
* Leptonic: Synchrotron, Inverse Compton Otten used for AGN, especially FSRQs.

* Hadronic: p-synchrotron

. . e T ] -- ECon DT Historical data
* Boosting and EBL + other y-y absorption . v ECaBR 4 Femian
Thermal (OT) . KvA } Swift-XRT

108+

Not included:
* Bremsstrahlung
* p-Y interactions, p-p inferactions
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* One-zone models
* Input: steady-state or injected particle distributions

* Time evolution included

* Included processes:
* Leptonic: Synchrotron, Inverse Compton,

* Hadronic: p/u-synchrotron, p-p interactions,
p-Y inferactions

* Boosting, Y-y absorption,
EBL absorption added externally

* Not included:
* Bremsstrahlung
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* One-zone models * Fitting:
* Input: steady-state or injected particle distributions * None

* Time evolution included

* Included processes:
* Leptonic: Synchrotron, Inverse Compton,

* Hadronic: p/p-synchrotron, p-p interactions,
p-Y inferactions

* Boosting, Y-y absorption,
EBL absorption added externally

* Not included:
* Bremsstrahlung



AMS https://am3.readthedocs.io/en/latest/index.html

* One-zone models * Fitting:
* Input: steady-state or injected particle distributions * None

* Time evolution included

[Of’ren used for AGN & GRBs ]

* Included processes:

* Leptonic: Synchrotron, Inverse Compton,

* Hadronic: p/u-synchrotron, p-p interactions,
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Summary

* Astrophysical modelling starts from relativistic plasma simulation = prediction of observed
photon spectra and lightcurves

* Not possible currently to model all steps at ones

* Current most common approach:
1. Use simulations to learn about possible environments/particle distributions etc.
2. Computed photon spectra
* using assumption on particle distributions
* using time-evolution codes

3. Fit to data = allows to constrain parameter space of the environments/particle
distribution

* Currently mostly done on flux points (SEDs)
* Better to do it on count data (dI3) itself = Gammapy

https://github.com/mireianievas/gammapy_mwl_workflow



Thank you
for
your attention!
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