

Dark Matter line search at Galactic Center using LST-1

<u>A. Abhishek</u> PhD Student at UniSi a.abhishek@student.unisi.it Abhishek^{a)}, Shotaro Abe^{b)}, Tomohiro Inada^{b,d,e)}, Michele Doro^{c)}, Masahiro Teshima^{b,f)}, and Sofia Ventura^{a)} for the CTAO-LST project.

a) Univ. Siena & INFN Pisa, b) ICRR, UTokyo, c) Univ. & INFN Padova, d) Kyushu Univ., e) CERN, f) MPP

Dark Matter search at Galactic Center

The search for TeV-scale dark matter, particularly in the Galactic Center region, is a crucial objective for the Large-Sized Telescopes (LSTs) and the Cherenkov Telescope Array Observatory (CTAO).

Dark Matter line signals from WIMPs

Monochromatic gamma-ray signals from WIMP DM interactions constitute a potential smoking gun signature for annihilating or decaying dark matter particles.

Search for a peak on 'smooth' counts spectrum majorly dominated by background. Currently we are focusing on direct $\gamma\gamma$ channel, plan to explore more sharp spectral features like VIB

IACTs imposing strong constraints

HESS-2018 and MAGIC-2023 have provided stringent constraints, reaching very close to the thermal relic cross-section

MAGIC-2023 performed analysis on 223 hours data taken at large zenith angle, showing sensitivity boosted at higher energies than previously reported limits

HESS-2018 had shown the line search from low-zenith observations. Performed On-Off analysis; hence not optimal for Burkert like shallow-core models

LST-1 observations of GC

LZA observations can boost effective area for up to ~100 TeV, LST-1 observes GC at large zenith angles, moreover it's wide field of view provides :

Boost in effective areas at higher energies ~ 10^6 m² and ~ 10^5 even at lower energies (0.4 TeV); strongly dependent on Zd

High effective area out upto 2.5°, demonstrating uniform performance over extended off-axis angles, suitable for extended sources >1°

Line search implementation - Methods

Spectral-only analysis; fitting a PL bkg and a DM signal to the energy distribution, isolating the spectral signature of dark matter annihilation without relying on spatial information.

for $\gamma\gamma$ annihilation channel; includes continuum part also, but will barely contribute

DM is modelled using default gammapy DM class Counts spectrum is modelled using a power-law within the **energy window** $(\pm 4\sigma)$ around the expected DM mass.

Line search implementation - Methods

Spectral-only analysis; fitting a PL bkg and a DM signal to the energy distribution, isolating the spectral signature of dark matter annihilation without relying on spatial information.

for $\gamma\gamma$ annihilation channel; includes continuum part also, but will barely contribute

DM is modelled using default gammapy DM class Counts spectrum is modelled using a power-law within the **energy window** $(\pm 4\sigma)$ around the expected DM mass.

Line search implementation - Methods

Spatial profile of DM: The DM expected flux strongly depends on the density profile of DM in the GC. Here we discuss two profiles: Einasto (Cuspy) and Burkert (Cored) profiles

function. Here we are using std gammapy within the ROI function

Estimated flux from DM annihilation; direct to $\gamma\gamma$ J-Factor is computed using standard gammapy tools particle spectrum estimated using a Dirac delta for Einasto (Cuspy) and Burkert (Cored) profiles

Dataset simulation using LST-1 IRFs

Simulated 3D datasets using LST-1 IRFs at zenith angle 62°. We use a wide (1.8° here) region of interest (ROI) and sum over spatial axes within the ROI to produce 1D dataset

Produce spectrum dataset of 40h by summing counts spatially within the ROI of 1.8°

J-Factor is computed using standard gammapy tools for Einasto (Cuspy) and Burkert (Cored) profiles within the ROI

Systematic studies on the bkg spectra

The sliding window technique is susceptible to a poor background modeling, which we will estimate by careful evaluation of the resulting systematic uncertainties

Difference in normalisation of bkg due to possible curvature

Fake line-like signal due to possible curvature

LST-1 expected results

Line search implementation - Results

Results shows are from fitting PL bkg + DM on best-fit PL background of the Asimov datasets. Current limits are already competitive

With the same 223-hour exposure as MAGIC-2023, LST-1 suggests improvement from MAGIC in the $\langle \sigma v_{III} \rangle$ by 26% (36%) and 21% (33%) for Einasto (Burkert) case at 10 and 30 TeV respectively.

Almost reaching MAGIC limits at > 10 TeV already

Line search implementation - Results

Thanks to its large mirror and wide field of view, and sensitivity at large zenith angles, LST-1 shows potential in probing of Wino and Higgsino models with shorter observation time

Current limits are 1.5 orders of magnitude away from the thermal Higgsino prediction

Einasto (Cuspy) 10-24 10-25 7_{95%UL} (ст³s⁻¹) 10-26 10-27 LST-1 (40h, Simulated) LST-1 (× √40/223 h) 10-28 MAGIC-2023 (yy) - 223h HESS-2018 (yy) - 254h 10-29 CTAO-2024 500h (Simulated) Higgsino prediction PRELIMINARY Thermal Higgsino DM 10-30 100 10¹ 102 Mass_{DM} [TeV] CTAO 2024

Current limits are <1 (0.78) orders of magnitude away from the thermal Wino prediction

Summary

A dedicated line-search pipeline has been developed for LST-1, already showcasing competitive sensitivity !

- We explored the potential for detecting sharp spectral features from dark matter annihilation using simulations for LST-1.
 - LST-1 has been observing GC at LZA since 2021 has collected ~ 40h of data
 - LST-1 IRFs at LZA are used to simulate datasets for 40h and estimate the sensitivity for DM lines
- A sliding-window technique was applied to fit background-only and DM+background models on 1D energy spectra.
- Projected upper limits were derived for an Einasto and Burkert dark matter density profiles across a range of masses.
- Our limits are competitive with the current constraints, shows potential in probing SUSY Wino and Higgsino cases.

• MAGIC-2023:

https://ui.adsabs.harvard.edu/abs/2023PhRvL.130f1002A/abstract

• HESS-2018:

https://ui.adsabs.harvard.edu/abs/2018PhRvL.120t1101A/abstract

• CTAO-2024:

https://ui.adsabs.harvard.edu/abs/2024JCAP...07..047A/abstract

• Abe et al. -2023:

https://www.aanda.org/articles/aa/abs/2023/12/aa46927-23/aa46927-23.html

• Pieri et al -2011:

https://ui.adsabs.harvard.edu/abs/2011PhRvD..83b3518P/abstract

A. Abhishek

Back-up

Back-up

For each mass, we fit the background with power-law, produce a new Asimov datased accordingly and fit the DM model with the power-law

Back-up

MAGIC-2023 used CLYMPY to get the J-factor values, we are using JFactory class in gammapy

Profile name	Profile type	α	β	γ	$ ho_s ~[{ m GeV}{ m cm}^{-3}$] r_s [kpc] $ ho$	$_{\odot}~[{ m GeVcm^{-3}}]$	$R_\odot~[m kpc]$	$R_{\rm max}$ [kpc]	Reference
Cuspy Einasto	Einasto	0.17	3 <u></u> 33		0.0790	20	0.388	8.5	433	[26, 32, 46]
NFW	Zhao	1	3	1	0.0768	21	0.384	8.5	402	[26, 32, 46]
Cored Zhao	Zhao	1	3	0	0.431	7.7	0.391	8.21	265	[55]
Burkert core	Burkert	—	_	1000	1.568	9.26	0.487	7.94	291	[52]

Profile name	$J(0.5^\circ)$	$J(1.0^\circ)$	$J(1.1^{\circ})$
Cuspy Einasto	3.14×10^{21}	8.01×10^{21}	9.03×10^{21}
NFW	2.18×10^{21}	4.55×10^{21}	5.02×10^{21}
Cored Zhao	$2.66 imes 10^{19}$	1.06×10^{20}	1.28×10^{20}
Burkert core	$1.26 imes 10^{19}$	$5.04 imes 10^{19}$	6.10×10^{19}

Our integrated and summed J-factor values: (1.1°)

- Cuspy Einasto: 9.33 x 10²¹
- NFW: 6.14 x 10¹⁹
- Cored Zhao: 1.28 x 10²⁰
- Burkert core: 6.14 x 10¹⁹

Back-up

We have used Cash statistics, eventually we will incorporate the systematic uncertainties in the likelihood function as was done in MAGIC-2023

Cash statistics

Extended likelihood (MAGIC-2023)

$$C = 2 \times \left(\mu_{\text{sig}} + \mu_{\text{bkg}} - n \times log(\mu_{\text{sig}} + \mu_{\text{bkg}})\right) \qquad \qquad \mathcal{L}_i(\langle \sigma v \rangle; \boldsymbol{\nu}_i \mid \mathcal{D}_i) = \mathcal{L}_i(\langle \sigma v \rangle; b_i, \tau_i \mid \{E'_j\}_{j=1,...,N_{\text{ON},i}}, N_{\text{ON},i}) \\ = \underbrace{\frac{(g_i + \tau_i b_i)^{N_{\text{ON},i}}}{N_{\text{ON},i}!} e^{-(g_i + \tau_i b_i)}}_{\text{(a)}} \times \underbrace{\prod_{j=1}^{N_{\text{ON},i}} \frac{1}{g_i + \tau_i b_i} (g_i f_g(E'_j) + \tau_i b_i f_b(E'_j))}_{\text{(b)}} \times \underbrace{\mathcal{T}(\tau_i \mid \tau_{\text{obs}}, \sigma_\tau)}_{\text{(c)}}$$

Term (c) corresponds to the likelihood term for the normalization of the background, parametrized by a Gaussian function

A. Abhishek

J-factor computed using gammapy tools, consistent with MAGIC-2024

Einasto profile:	Burkert profile:			
<u>ROI 1.1</u> °: [GeV ² cm ⁻⁵]	<u>ROI 1.1</u> °: [GeV ² cm ⁻⁵]			
 MAGIC-2024 : 9.03 x 10²¹ This study : 9.33 x 10²¹ 	 MAGIC-2024 : 6.10 x 10¹⁹ This study : 6.14 x 10¹⁹ 			
<u>ROI 1.80 - we used</u> :	<u>ROI 1.80 - we used</u> :			
$1.64 \times 10^{22} \text{GeV}^2 \text{cm}^{-5}$	$1.63 \times 10^{20} \text{GeV}^2 \text{cm}^{-5}$			

Line search implementation - U.L computation

The analysis is performed with a 1D log-likelihood ratio test statistics (TS) using the spectral features of the DM line signal in energy windows centered at DM mass

Profile likelihood scan for computing upper limits at 95% C.L

Energy resolution

LST-1 alone shows descent energy resolution at higher energies compared to MAGIC telescopes at large zenith angles

