

Sensitivity of CTAO to axion-like particles from blazars

A machine learning approach

^{1,2}F. Schiavone, ²L. Di Venere, ^{1,2}F. Giordano for the CTAO Consortium
¹Università degli Studi di Bari

²INFN Bari

2nd VHEgam Meeting

26 May 2025 Centro Polifunzionale Studenti, Bari

Axion-like particles (ALPs)

- Hypothetical pseudo-scalar particles with mass m_a and effective coupling to photons $g_{a\gamma}$
- ALP-photon oscillations possible in external magnetic fields
- Potential imprint on the spectra of astrophysical sources:

$$\phi_{\rm obs}(E) = \phi_{\rm int}(E) P_{\gamma\gamma}(E)$$

ALP-photon conversions in blazars

Blazar selection

Source	z	$RA \ [deg]$	$Dec \ [deg]$
Mrk 501 Mrk 421 PKS 2155–304	$0.034 \\ 0.031 \\ 0.116$	$253.47 \\ 166.11 \\ 329.72$	$39.76 \\ 38.21 \\ -30.23$

- Some of the most well-known and studied extragalactic gamma-ray sources
- High synchrotron peaked BL Lacs (HBLs) → significant TeV emission
- Available jet magnetic field models
- Included in the CTAO AGN Key Science Project → lots of data to be expected! [arXiv:1709.07997]

Spectral modelling

- Spectral models (assumed valid between 30 GeV and 10 TeV):
 - Baseline states from the Fermi-LAT 4FGL-DR4 catalog
 - Flaring states from past IACT observations
- Photon survival probability $P_{\gamma\gamma}(E)$ computed using GammaALPs, including:
 - Jet magnetic field [Potter & Cotter 2015, <u>arXiv:1508.00567</u>]
 - Milky Way magnetic field [Jansson & Farrar 2012]
 - EBL absorption [Domínguez+ 2011]

https://github.com/me-manu/gammaALPs/ https://gammaalps.readthedocs.io/

ALP effects on gamma-ray spectra

Project outline

- Motivation: CTAO's energy resolution and point-source sensitivity are well-suited to detect the spectral oscillations due to ALPs
- Goal: obtain (better) CTAO sensitivity limits on the ALP parameter space
- Standard method: likelihood-ratio $TS(m_a, g_{av})$
 - CTA(O) fundamental physics Consortium Paper [arXiv:2010.01349]
 - MAGIC paper on ALPs from the Perseus Galaxy Cluster [arXiv:2401.07798]
 - Both works focus on the AGN NGC 1275
- Our method: define a grid of machine learning (ML) classifiers, one for each (m_a, g_{ay}) pair

Dataset simulation

- For each source, we consider CTAO prod5 IRFs, 20° zenith distance and
 - 50 h livetime for the baseline states
 - 5 h livetime for the flaring states

Source	Livetime (h)	IRFs
Mrk 501 (baseline)	50	Prod5-North-20deg-AverageAz-4LSTs09MSTs.180000s
Mrk 421 (baseline)	50	Prod5-North-20deg-AverageAz-4LSTs09MSTs.180000s
PKS 2155–304 (baseline)	50	Prod5-South-20deg-AverageAz-14MSTs37SSTs.180000s
Mrk 501 (flaring)	DE5	Prod5-North-20deg-AverageAz-4LSTs09MSTs.18000s
Mrk 421 (flaring)	5	Prod5-North-20deg-AverageAz-4LSTs09MSTs.18000s
PKS 2155-304 (flaring)	5	Prod5-South-20deg-AverageAz-14MSTs37SSTs.18000s

Dataset simulation

- We simulate ON-OFF observations ($\alpha = 1/3, 0.7^{\circ}$ offset) *without* ALPs, using 40 bins per energy decade as in the Consortium Paper
- Mean sensitivity would require simulating many such datasets (e.g. using Dataset.fake() in Gammapy) and averaging the results
- «Asimov» datasets avoid this by eliminating fluctuations (Cowan+ 2010, arXiv:1007.1727)
 - Application to ALPs in Meyer+ 2014 [arXiv:1406.5972, arXiv:1410.1556]

Classifier training

- Define a grid of ML classifiers over the ALP space, based on the XGBoost algorithm
- Train each of those with 2000 simulated spectra with/without ALPs, using excess photon counts in each bin (normalized between 0 and 1) as features
- Present each classifier with the counts in the Asimov dataset
- It will output a probability $p_{ALP,A}(m_a, g_{a\gamma})$ that the dataset contains ALP signatures

<u>https://github.com/dmlc/xgboost</u> <u>https://xgboost.readthedocs.io/en/release_3.0.0/</u>

Derivation of limits

- Define $\Pi_A(m_a, g_{a\gamma}) = 1 p_{\text{ALP},A}(m_a, g_{a\gamma})$
- For each $(m_a, g_{a\gamma})$ point, compute a Π distribution from 2000 simulated ALP datasets
 - small Π : ALP-like dataset
 - large Π: ALP-less dataset
- Fit with a Beta distribution and compute the CDF value at Π_A

$$f(x,\alpha,\beta) = \frac{\Gamma(\alpha+\beta)x^{\alpha-1}(1-x)^{\beta-1}}{\Gamma(\alpha)\Gamma(\beta)}$$

• Estimate exclusion significance in σ as $z = \sqrt{2} \operatorname{erf}^{-1}(\operatorname{CDF}_A)$

Example П distributions

«Good» distribution – exclusion

Results (ML approach)

F. Schiavone – 2nd VHEgam Meeting

Results (standard likelihood-ratio TS)

F. Schiavone – 2nd VHEgam Meeting

Results comparison (Mrk 501 baseline, 50 h)

Reference limits (95% CL) from https://github.com/cajohare/AxionLimits

Conclusions

- Among its many exciting prospects, CTAO will be a great tool to probe new fundamental physics
- Blazars in particular are ideal targets for ALP searches, not fully explored yet
- Previously unconstrained ALP parameter space can be covered with both methods, even with few hours of data
- The ML approach seems to offer some improvement (proof of concept, more systematic tuning needed)
- A paper and a public GitHub repository are currently in preparation stay tuned!

Thank you for your attention!

All questions and comments welcome :) <u>francesco.schiavone@ba.infn.it</u> Backup

Source and simulation parameters

C		$\mathbf{D}\mathbf{A}$ (\mathbf{J}_{n-1})	$\mathbf{D}_{ab}(\mathbf{J}_{ab})$	gammaALPs parameters						
Source	Z	KA (deg)	Dec (deg)	r_0 (pc)	B0 (G)	gmax	gmin	n0 (cm^{-3})	rjet (pc)	alpha
Mrk 501	0.034	253.47	39.76	0.36	0.81	9	2	4.5×10^4	3.2×10^3	1.68
Mrk 421	0.031	166.11	38.21	7.19	$2.91 imes 10^{-2}$	12	9	$8.5 imes 10^3$	$9.7 imes 10^4$	1.55
PKS 2155-304	0.116	329.72	-30.23	0.33	0.82	15	7	1.65×10^4	$3.2 imes 10^3$	1.70

Source	Livetime (h)	IRFs	Reference spectrum
Mrk 501 (baseline)	50	Prod5-North-20deg-AverageAz-4LSTs09MSTs.180000s	LP [52]
Mrk 421 (baseline)	50	Prod5-North-20deg-AverageAz-4LSTs09MSTs.180000s	SECPL [52]
PKS 2155–304 (baseline)	50	Prod5-South-20deg-AverageAz-14MSTs37SSTs.180000s	LP [52]
Mrk 501 (flaring)	5	Prod5-North-20deg-AverageAz-4LSTs09MSTs.18000s	LP [53]
Mrk 421 (flaring)	5	Prod5-North-20deg-AverageAz-4LSTs09MSTs.18000s	ECPL [54]
PKS 2155-304 (flaring)	5	Prod5-South-20deg-AverageAz-14MSTs37SSTs.18000s	ECPL [55]

Source	Model	ϕ_0	E_0	α	β	$E_{\rm cut}$	a	Γ_1	Γ_2	Ref.
	Baseline	$[MeV^{-1} cm^{-2} s^{-1}]$	[MeV]			[MeV]				
Mrk 501	LP	3.91×10^{-12}	1507.92	1.75	0.018	_	_	_	_	[52]
Mrk 421	SECPL	1.79×10^{-11}	1258.26	_	_	_	0.011	1.74	0.65	[52]
PKS 2155-304	LP	1.34×10^{-12}	1146.89	1.77	0.041	_	_	—	—	[52]
	Flaring	$[\text{TeV}^{-1}\text{cm}^{-2}\text{s}^{-1}]$	[TeV]			[TeV]				
Mrk 501	LP	1.86×10^{-9}	0.3	1.73	0.13	_	_	_	_	[53]
Mr 421	ECPL	3.58×10^{-10}	1.0	_	_	2.74	_	_	—	[54]
PKS $2155 - 304$	ECPL	2.38×10^{-9}	1.0	_	_	1.0	_	_	_	[55]

Asimov datasets

- Defined so that for each energy bin $N_{\text{on},i} = \mu_i$ (signal + bkg) and $N_{\text{off},i} = b_i / \alpha \ (\alpha = 1/3)$
- In Gammapy:
- [9]: npred = dataset_on_off_mock.npred()
 npred_bkg = dataset_on_off_mock.npred_background()
 acceptance = dataset_on_off_mock.acceptance
 acceptance_off = dataset_on_off_mock.acceptance_off
 exposure = dataset_on_off_mock.exposure
 edisp = dataset_on_off_mock.edisp

SpectrumDatasetOnOff

Namo

Name	1	HKHDOI_ASIMOV
Total counts	:	37960
Total background counts	:	14647.66
Total excess counts	:	23313.22
Predicted counts	:	37960.88
Predicted background counts	:	14647.66
Predicted excess counts	:	23313.22
Exposure min	:	2.05e+06 m2 s
Exposure max	:	5.41e+10 m2 s
Number of total bins	:	101
Number of fit bins	:	0
Fit statistic type	:	wstat

Mkn501 Asimov

Fit statistic value (-2 log(L)) : 0.00

Asimov datasets

- We simulate 40 bins per decade between 30 GeV and 10 TeV
- The choice of binning agrees with the previous Consortium Paper

Classifier choice

- We chose a classifier based on the XGBoost algorithm
- The choice was motivated by generally good performance on test datasets and ease of use
- As expected, the algorithm accuracy degrades with the telescopes' sensitivity

Standard derivation of limits

- Compute the expected spectral model of the source for different ALP parameters
- Compute likelihood-ratio $TS_A(m_a, g_{a\gamma})$ for the Asimov dataset (cf. MAGIC paper)

$$TS(m_a, g_{a\gamma}|D) = -2\ln\frac{\mathcal{L}(m_a, g_{a\gamma}|D)}{\hat{\mathcal{L}}(D)}$$

- For each point in the ALP parameter space, simulate 100 observations with ALPs (using Gammapy's fake() method) and compute a TS distribution
- Fit with a Gamma distribution and compute the CDF value at TS_A
- Estimate exclusion significance as $z = \sqrt{2} \operatorname{erf}^{-1}(\operatorname{CDF}_A)$

Significance estimation

$$CDF(TS_A) \equiv 2\frac{1}{\sqrt{2\pi}} \int_0^z e^{-\frac{t^2}{2}} dt = \frac{2}{\sqrt{\pi}} \int_0^{\frac{z}{\sqrt{2}}} e^{-t'^2} dt' = erf\left(\frac{z}{\sqrt{2}}\right)$$

Example TS distribution

