
Introductory course to VHDL and HLS FPGA
programming

Day 4

Sioni Summers (CERN)
26 June 2025 - Milan

FPGA School - Sioni Summers26/6/2025

Introduction
• High Level Synthesis is a new paradigm in programming FPGAs

- Write algorithms → synthesis tool determines the hardware

- Input using C++ — higher level abstraction than HDLs

- Productivity 📈 — create working designs faster

- Sophistication 📈 — create advanced designs with complicated algorithms

• But working with HLS still requires expertise, and a foundation in HDL is a great starting point

• Main topics of this part:

- Number representations and arithmetic

- Loop Analysis and Optimization

2

Fast ML at the Edge - Sioni Summers8 March 2024

About me
• Staff at CERN working on Level 1 Trigger Upgrade for CMS experiment

- Mostly designing and implementing detector reconstruction algorithms for
Level 1 Trigger

- Track reconstruction, vertexing, particle flow, jets, jet tagging, ML

- Task leader in Next Generation Triggers project

• PhD High Energy Physics Imperial College London

- Thesis: “Applications of FPGAs to triggering in particle physics”

- Designing physics algorithms with high level languages for FPGAs

• Also deploying Machine Learning into FPGAs for low latency

- hls4ml coordinator 2020-2022, creator and maintainer of conifer

• Leading Edge SpAIce project at CERN: ML in FPGA for satellites

3

sioni@cern.ch

sioni.web.cern.ch

@thesps

@ssummers

mailto:sioni@cern.ch
http://sioni.web.cern.ch
http://github.com/thesps
http://gitlab.cern.ch/ssummers
mailto:sioni@cern.ch
mailto:sioni@cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch

FPGA School - Sioni Summers26/6/2025

One FPGA Case Study
• For the CMS Phase 2 Upgrade we are designing jet reconstruction and tagging

- Find cones of particles from the decay of a parent particle, and use ML to predict
the parent particle type, make CMS will collect data for important event types (e.g.
HH→bbbb)

• Less than 1 μs from particles input to tagged jets output

• We used both HLS and VHDL, and hls4ml for the Neural Network

4

Particle receiving
Jet finding

Jet tagging (NN)

Part 1
Numerics: Fixed Point Arithmetic

FPGA School - Sioni Summers26/6/2025

• On your CPU (and GPU) you are probably familiar with integer and floating point numerical formats

• Integer represents integer values in a fixed number of bits (e.g. 32, 16, 8)

• Floating point represents values with a mantissa and exponent : m · 2e

- It’s like scientific notation with binary

• Simplified examples, representing the number 113, ignoring sign (positive values only)

6

27 26 25 24 23 22 21 20

0 1 1 1 0 0 0 1

102 101 100

1 1 3

Base 10 integer
11310

Base 2 integer
0b01110001

100 10-1 10-2

1 1 3·
· 10^

100 10-1

2 0·

Base 10 floating point
(3 digit mantissa,
2 digit exponent)

1.13 ⨉ 102.0

23 22 21 20

1 1 1 0
· 2^

23 22 21 20

1 0 0 0

Base 2 floating point
(4 bit mantissa,
4 bit exponent)
14 ⨉ 28 = 112

(Approximate)

FPGA School - Sioni Summers26/6/2025

Operations
• On your CPU (and GPU) you are probably familiar with integer and floating point numerical formats

• Integer represents integer values in a fixed number of bits (e.g. 32, 16, 8)

• Floating point represents values with a mantissa and exponent : m · 2e

• Demo:

- Suppose we have decimal integers x = 15 and y = 27

- Compute z = x + y using “long hand”

7

X 1 5

Y 2 7

Z 4 2
1 Carry

FPGA School - Sioni Summers26/6/2025

Integers
• On your CPU (and GPU) you are probably familiar with integer and floating point numerical formats

• Integer represents integer values in a fixed number of bits (e.g. 32, 16, 8)

• Floating point represents values with a mantissa and exponent : m · 2e

• Exercise:

- Suppose we have 4-bit unsigned (positive) integers x = 0b0011 and y = 0b0101

- Compute z = x + y — use the “long hand” method and remember to “carry the 1”

8

Note: 0b prefix

 means binary number

FPGA School - Sioni Summers26/6/2025

Integer addition
• On your CPU (and GPU) you are probably familiar with integer and floating point numerical formats

• Integer represents integer values in a fixed number of bits (e.g. 32, 16, 8)

• Floating point represents values with a mantissa and exponent : m · 2e

• Exercise:

- Suppose we have 4-bit unsigned (positive) integers x = 0b0011 and y = 0b0101

- Compute z = x + y — use the “long hand” method and remember to “carry the 1”

9

Note: 0b prefix

 means binary number

x 0 0 1 1

y 0 1 0 1

Z 1 0 0 0
111

Sanity check:

0b0011 = 310

0b0101 = 510

3 + 5 = 8

810 = 0b1000

✓

Note: subscript10

 means decimal number

Answer

FPGA School - Sioni Summers26/6/2025

Overflow, saturation, truncation
• When working with decimals we usually perform “bit growth” intuitively e.g. 9 + 3 = 12 — one more digit in result

• With computer arithmetic the bit sizes are usually fixed e.g. 4, 8, 16, 32 bits

• When results of operations exceed the constraints of the precision, we can get overflow

- Exercise: compute 1210 + 510 with 4 bit operands and 4 bit result ie ignore anything beyond 4 bits

10

FPGA School - Sioni Summers26/6/2025

Overflow, saturation, truncation
• When working with decimals we usually perform “bit growth” intuitively e.g. 9 + 3 = 12 — one more digit in result

• With computer arithmetic the bit sizes are usually fixed e.g. 4, 8, 16, 32 bits

• When results of operations exceed the constraints of the precision, we can get overflow

- Exercise: compute 1210 + 510 with 4 bit operands and 4 bit result ie ignore anything beyond 4 bits

• Overflows can be problematic, data is essentially corrupted

- 1210 + 510 = 110 ?

- Results of summing two positive values could be negative

11

x 1 1 0 0

y 0 1 0 1

Z 1 0 0 0 1

Answer

FPGA School - Sioni Summers26/6/2025

Overflow, saturation, truncation
• When working with decimals we usually perform “bit growth” intuitively e.g. 9 + 3 = 12 — one more digit in result

• With computer arithmetic the bit sizes are usually fixed e.g. 4, 8, 16, 32 bits

• When results of operations exceed the constraints of the precision, we can get overflow

- Exercise: compute 1210 + 510 with 4 bit operands and 4 bit result ie ignore anything beyond 4 bits

• Overflows can be problematic, data is essentially corrupted

• We can saturate to avoid overflows — the result is still “wrong” but is likely to be more useful than the overflowed one

- Clip the value to the largest (or most negative) value

• Exercise: what would be the saturated value of the previous exercise?

12

x 1 1 0 0

y 0 1 0 1

Z 1 0 0 0 1
11

Answer

FPGA School - Sioni Summers26/6/2025

Bit Growth
• When results of operations exceed the constraints of the precision, we can get overflow

• With computer arithmetic the bit sizes are usually fixed e.g. 4, 8, 16, 32 bits

• We can increase the bit precision of the result of an operation in an FPGA to compensate for overflow

- Provided the result is stored in a different memory/register/logic than the operands of smaller width

• Exercise: assuming unsigned integers, what would be the required bit-width for the result of:

- a 4-bit integer summed with a 4-bit integer?

- a 4-bit integer summed with a 3-bit integer?

- a N-bit integer summed with an M-bit integer?

13

- a 4-bit integer multiplied with a 4-bit integer?

- a 4-bit integer multiplied with a 3-bit integer?

- a N-bit integer multiplied with an M-bit integer?

Hint: consider the maximum values of each operand

FPGA School - Sioni Summers26/6/2025

Bit Growth
• Exercise: assuming unsigned integers, what would be the required bit-width for the result of:

- a 4-bit integer summed with a 4-bit integer?

- a 4-bit integer summed with a 3-bit integer?

- a N-bit integer summed with an M-bit integer?

• General rules to guarantee no overflow:

- for addition & subtraction the result bitwidth should be 1 + max(N,M)

- for multiplication the result bitwidth should be N + M

14

- a 4-bit integer multiplied with a 4-bit integer?

- a 4-bit integer multiplied with a 3-bit integer?

- a N-bit integer multiplied with an M-bit integer?

Answer

FPGA School - Sioni Summers26/6/2025

Two’s complement
• So far we used unsigned integers, but that’s limiting

• How do we represent negative values with fixed size binary numbers?

• Most common method: two’s complement

• To work out the two’s complement representation of a negative number (e.g. -610 in 4 bits)

- Start with the binary representation of the absolute value: 610 = 0b0110

- Invert all of the bits: 0b0110 → 0b1001

- Add 1 to the value, ignoring overflow: 0b1001 → 0b1010

• Observations:

- The most significant bit always denotes the sign — leading 0 → positive or zero, leading 1 → negative (but not sign & value)

- We can do arithmetic with numbers in this representation

- Exercise: take two 4 bit two’s complement numbers x = +310 , y = -110 and compute x + y in binary

15

FPGA School - Sioni Summers26/6/2025

Two’s complement exercise
• Exercise: take two 4 bit two’s complement numbers x = +310 , y = -110 and compute x + y in binary

• Exercise: what are the maximum and minimum values of a:

- 4 bit unsigned integer

- 4 bit two’s complement integer

- 7 bit two’s complement integer

16

x 0 0 1 1

y 1 1 1 1

Z 0 0 1 0
1111

Sanity check:

0b0011 = 310

0b1111 = -110

3 - 1 = 2

210 = 0b0010

✓

Answer

FPGA School - Sioni Summers26/6/2025

Two’s complement exercise
• Exercise: take two 4 bit two’s complement numbers x = +310 , y = -110 and compute x + y in binary

• Exercise: what are the maximum and minimum values (excluding zero) of a:

- 4 bit unsigned integer

- 4 bit two’s complement integer

- 7 bit two’s complement integer

17

x 0 0 1 1

y 1 1 1 1

Z 0 0 1 0
1111

Sanity check:

0b0011 = 310

0b1111 = -110

3 - 1 = 2

210 = 0b0010

✓

Max = 15, Min = 1

Max = 7, Min = -8

Max = 63, Min = -64

Answer

FPGA School - Sioni Summers26/6/2025

Fixed Point
• On CPU / GPU we need to work with number types that are native to the hardware

- We can emulate other number types but it arithmetic won’t run with high performance

• On FPGA we are designing the hardware itself, so we can use any number representation that we like

• We’ll see this for ourselves soon, but integer operations are much less resource and latency intensive than floating point

• But what if we want to represent fractions? Enter fixed point

• Fixed point combines some of the convenience of floating point with the low hardware cost of integers

• Recall: floating point is m · 2e → in fixed point the value of exponent is fixed so it doesn’t need to be explicitly represented

• Example: 8 bit unsigned fixed point with 4 integer bits, 4 fractional bits, representing 9.312510

18

23 22 21 20 2-1 2-2 2-3 2-4

1 0 0 1 0 1 0 1

FractionInteger

·

·

Binary point / radix point

FPGA School - Sioni Summers26/6/2025

Fixed Point
• Exercise: what are the values in base 10 of these 8 bit unsigned fixed-point numbers?

- What are the maximum and minimum values of the three fixed-point number formats?

19

23 22 21 20 2-1 2-2 2-3 2-4

0 1 1 1 0 0 0 1

25 24 23 22 21 20 2-1 2-2

0 1 1 1 0 0 0 1

2-4 2-5 2-6 2-7 2-8 2-9 2-11 2-11

0 1 1 1 0 0 0 1

FractionInteger

FractionInteger

Fraction

23 22 21 20 2-1 2-2 2-3 2-4

1 0 0 1 0 1 0 1

FractionInteger

= 9 .312510

a.

b.

c.

Example

FPGA School - Sioni Summers26/6/2025

Fixed Point
• Exercise: what are the values in base 10 of these 8 bit unsigned fixed-point numbers?

- What are the maximum and minimum values of the three fixed-point number formats?

20

23 22 21 20 2-1 2-2 2-3 2-4

0 1 1 1 0 0 0 1

25 24 23 22 21 20 2-1 2-2

0 1 1 1 0 0 0 1

2-4 2-5 2-6 2-7 2-8 2-9 2-11 2-11

0 1 1 1 0 0 0 1

FractionInteger

FractionInteger

Fraction

23 22 21 20 2-1 2-2 2-3 2-4

1 0 0 1 0 1 0 1

FractionInteger

= 9 .312510

a.

b.

c.

Example

x = 28.25
Max = 63.75
Min = 0.25

X = 7.0625
Max = 15.9375
Min = 0.0625

X = 0.05517578125
Max = 0.12451171875
Min = 0.00048828125

Answer

FPGA School - Sioni Summers26/6/2025

Fixed Point
• Exercise: can you generalise the rules for bit-growth of integers to bit-growth of fixed-point?

- 1) For addition/subtraction and 2) multiplication. Hint: consider maximum and minimum values

- Operand 0: F0 fractional bits, I0 integer bits (F0 + I0 width); Operand 1: F1 fractional bits, I1 integer bits (F1 + I1 width)

- Recall the integer bit-growth rules, with operand widths ’N’ and ‘M’

- for addition & subtraction the result bitwidth should be 1 + max(N,M)

- for multiplication the result bitwidth should be N + M

21

FPGA School - Sioni Summers26/6/2025

Fixed Point
• Exercise: can you generalise the rules for bit-growth of integers to bit-growth of fixed-point?

- 1) For addition/subtraction and 2) multiplication. Hint: consider maximum and minimum values

- Operand 0: F0 fractional bits, I0 integer bits (F0 + I0 width); Operand 1: F1 fractional bits, I1 integer bits (F1 + I1 width)

- Recall the integer bit-growth rules, with operand widths ’N’ and ‘M’

- for addition & subtraction the result bitwidth should be 1 + max(N,M)

- for multiplication the result bitwidth should be N + M

• Addition:

- To safely add/subtract two fixed-point values, align the binary point first (HLS will do this automatically)

- The result must accommodate the largest integer range and maximum fractional precision

- Integer bits : max(I0, I1) + 1 // +1 for carry

- Fractional bits: max(F0, F1)

- Total width : max(I0, I1) + max(F0, F1) + 1

22

Answer

FPGA School - Sioni Summers26/6/2025

Fixed Point
• Exercise: can you generalise the rules for bit-growth of integers to bit-growth of fixed-point?

- 1) For addition/subtraction and 2) multiplication. Hint: consider maximum and minimum values

- Operand 0: F0 fractional bits, I0 integer bits (F0 + I0 width); Operand 1: F1 fractional bits, I1 integer bits (F1 + I1 width)

- Recall the integer bit-growth rules, with operand widths ’N’ and ‘M’

- for addition & subtraction the result bitwidth should be 1 + max(N,M)

- for multiplication the result bitwidth should be N + M

• Multiplication:

- When multiplying two fixed-point numbers, both integer and fractional parts grow

- The binary point is at the sum of the original positions

- Integer bits : I0 + I1

- Fractional bits: F0 + F1

- Total width : I0 + I1 + F0 + F1

23

Answer

FPGA School - Sioni Summers26/6/2025

Introduction to High Level Synthesis
• Now we’ll get some hands on experience with numerics in High Level Synthesis

• Reminder: why do we use it?

- Write FPGA designs in C++: lower barrier to entry than HDL

- Rapid design space exploration (explore resource / latency tradeoffs with ease); realise complex algorithms

•🛠 Typical HLS workflow

- ✏ Write C/C++ kernel: my_function.cpp

- 🧪 Create testbench: my_function_tb.cpp to simulate inputs/outputs

- ⚙ Run HLS flow using Vitis HLS:

- C Simulation: functional correctness check using the testbench — HLS C++ code is executed on the CPU

- C Synthesis: HLS C++ code is synthesized into RTL + resource/latency estimates

- Co-Simulation: validate generated RTL against testbench — clock cycle accurate

• Optimize latency, throughput, and resource usage (LUTs, FFs, DSPs, BRAM)

- Explore trade-offs using loop unrolling, pipelining, precision tuning

24

FPGA School - Sioni Summers26/6/2025

Introduction to High Level Synthesis
•📁 Structure of a Typical HLS Project

- 🔧 my_function.cpp — algorithm to be synthesized to FPGA

- 📊 my_function_tb.cpp — C++ testbench that drives inputs and checks outputs

- 📂 hls_prj/ — directory with reports, logs, RTL, etc. produced from the HLS tool

- 🧾 script.tcl — automates synthesis/verification in batch mode

25

open_project my_proj
add_files my_function.cpp
add_files -tb my_function_tb.cpp
open_solution "solution1"
set_top my_function
create_clock -period 5
csim_design
csynth_design
cosim_design

FPGA School - Sioni Summers26/6/2025

Introduction to High Level Synthesis
• 🔧 my_function.cpp — algorithm to be synthesized to FPGA
→ This is where you describe your logic in standard C++ (with some HLS-specific types)

• 🎯 Define a “top-level” function
→ This is the function that Vitis HLS treats as the hardware module interface
→ Must use scalar or array arguments (no dynamic memory, no STL containers)

• 🧮 Use ap_fixed datatypes for fixed-point arithmetic
→ Provided by the ap_fixed.h header
→ Enables precise control of bit widths for resource and accuracy trade-offs

• 🔢 ap_fixed<16, 5>
→ 16-bit signed number: 5 integer bits, 11 fractional bits

• 🔢 ap_fixed<8, 3, AP_RND, AP_SAT>
→ 8-bit signed, 3 integer bits, 5 fractional, AP_RND = round to nearest; AP_SAT = saturate on overflow

• 🏗 Use #pragma HLS directives to control synthesis behavior
→ Guide unrolling, pipelining, array partitioning, and interface behavior
→ These affect latency, throughput, and resource usage

• 📅 Tomorrow: we'll explore how to use pragmas to tune designs for performance and resource efficiency

26

FPGA School - Sioni Summers26/6/2025

Introduction to High Level Synthesis
• Example HLS top-level function, sum two dimension-8 vectors of 16 bit, 8 integer bit values

• When you have all of the ingredients, launch the workflow from the command line with:

- vitis_hls -f csim.tcl ; vitis_hls -f csynth.tcl ; vitis_hls -f cosim.tcl

- This will create a project, run simulation, synthesis, and/or co-simulation as defined in the script

27

#include “ap_fixed.h”

typedef ap_fixed<16,8> data_t;

void vec_sum(const data_t in1[8], const data_t in2[8], data_t out[8]) {
 VectorLoop:

for (int i = 0; i < 8; ++i) {
 out[i] = in1[i] + in2[i];
 }
}

FPGA School - Sioni Summers26/6/2025

Analyzing Designs
• After we run C Synthesis and Co Simulation, we generate many reports and also an HLS project

- All of them contain very useful information for analyzing the design

- In particular:

- 📄 <project name>/<solution name>/syn/report/csynth.rpt

- 📄 <project name>/<solution name>/sim/report/<top name>_cosim.rpt

- These reports can also be viewed in the GUI (next slides)

28

+ Performance & Resource Estimates:

 PS: '+' for module; 'o' for loop; '*' for dataflow
 +---------------+------+------+---------+---------+----------+---------+------+----------+------+----+----------+----------+-----+
 | Modules | Issue| | Latency | Latency | Iteration| | Trip | | | | | | |
 | & Loops | Type | Slack| (cycles)| (ns) | Latency | Interval| Count| Pipelined| BRAM | DSP| FF | LUT | URAM|
 +---------------+------+------+---------+---------+----------+---------+------+----------+------+----+----------+----------+-----+
 |+ vec_sum | -| 0.87| XX| XXX.XXX| XX| XX| XX| y/n| XX| XX| XX| XX| XX|
 | o VectorLoop | -| 7.30| X| XXX.XXX| XX| XX| XX| y/n| XX| XX| XX| XX| XX|
 +---------------+------+------+---------+---------+----------+---------+------+----------+------+----+----------+----------+-----+

FPGA School - Sioni Summers26/6/2025

HLS GUI
• We will also use the HLS GUI for some analysis, to open: run vitis_hls -classic (classic option for ≥ 2023.2)

• You may use whichever file editor you like, but the HLS GUI does provide some useful auto-completion

29

FPGA School - Sioni Summers26/6/2025

HLS GUI
• The analysis after running synthesis is especially useful e.g. schedule viewer

- did the design map to HW as expected? Where are the bottlenecks in the design impacting performance?

30

