Introductory course to VHDL and HLS FPGA programming Day 4

Sioni Summers (CERN) 26 June 2025 - Milan

Introduction

- High Level Synthesis is a new paradigm in programming FPGAs
 - Write algorithms \rightarrow synthesis tool determines the hardware
 - Input using C_{++} higher level abstraction than HDLs
 - Productivity \swarrow create working designs faster
 - Sophistication \swarrow create advanced designs with complicated algorithms
- But working with HLS still requires expertise, and a foundation in HDL is a great starting point
- Main topics of this part:
 - Number representations and arithmetic
 - Loop Analysis and Optimization

About me

- Staff at CERN working on Level 1 Trigger Upgrade for CMS experiment
 - Mostly designing and implementing detector reconstruction algorithms for Level 1 Trigger
 - Track reconstruction, vertexing, particle flow, jets, jet tagging, ML
 - Task leader in Next Generation Triggers project
- PhD High Energy Physics Imperial College London
 - Thesis: "Applications of FPGAs to triggering in particle physics"
 - Designing physics algorithms with high level languages for FPGAs
- Also deploying Machine Learning into FPGAs for low latency
 - hls4ml coordinator 2020-2022, creator and maintainer of conifer
- Leading Edge SpAlce project at CERN: ML in FPGA for satellites

One FPGA Case Study

- For the CMS Phase 2 Upgrade we are designing jet reconstruction and tagging
 - Find cones of particles from the decay of a parent particle, and use ML to predict the parent particle type, make CMS will collect data for important event types (e.g. HH→bbbb)
- Less than 1 µs from particles input to tagged jets output

Numerics: Fixed Point Arithmetic

Part 1

- On your CPU (and GPU) you are probably familiar with integer and floating point numerical formats
- Integer represents integer values in a fixed number of bits (e.g. 32, 16, 8)
- Floating point represents values with a mantissa and exponent : $m \cdot 2^{e}$
 - It's like scientific notation with binary
- Simplified examples, representing the number 113, ignoring sign (positive values only)

Base 10 integer 113 ₁₀	1	02		10	1		10 ⁰		Base 10 floating point (3 digit mantissa,		10 ⁰	1	O -1	10 -2	. 10^	10	10 ⁰ 10 ⁻¹	
		1		1			3		2 digit exponent) 1.13 × 10 ^{2.0}		1	•	1	3	• 10/	2) •	0
Base 2 integer	27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	20	Base 2 floating point (4 bit mantissa.	2 ³	2 ²	2 ¹	2 ⁰		2 ³	2 ²	2 ¹	2
0b01110001	0	1	1	1	0	0	0	1	4 bit exponent) $14 \times 2^8 = 112$		1	1	0	· 2^	1	0	0	(
									(Approximate)	•	•	•	Ŭ			Ŭ	Ŭ	

Operations

- On your CPU (and GPU) you are probably familiar with integer and floating point numerical formats
- Integer represents integer values in a fixed number of bits (e.g. 32, 16, 8)
- Floating point represents values with a mantissa and exponent : $m \cdot 2^{e}$

Integers

- On your CPU (and GPU) you are probably familiar with integer and floating point numerical formats
- Integer represents integer values in a fixed number of bits (e.g. 32, 16, 8)
- Floating point represents values with a mantissa and exponent : $m \cdot 2^{e}$

• Exercise:

- Suppose we have 4-bit unsigned (positive) integers x = 0b0011 and y = 0b0101
- Compute z = x + y use the "long hand" method and remember to "carry the 1"

Integer addition

- On your CPU (and GPU) you are probably familiar with integer and floating point numerical formats
- Integer represents integer values in a fixed number of bits (e.g. 32, 16, 8)
- Floating point represents values with a mantissa and exponent : $m \cdot 2^{e}$

• **Exercise**:

- Suppose we have 4-bit unsigned (positive) integers x = 0b0011 and y = 0b0101
- Compute z = x + y use the "long hand" method and remember to "carry the 1"

Sanity check: $0b0011 = 3_{10}$ $0b0101 = 5_{10}$ 3 + 5 = 8 $8_{10} = 0b1000$

Note: subscript₁₀ means decimal number

Overflow, saturation, truncation

- With computer arithmetic the bit sizes are usually fixed e.g. 4, 8, 16, 32 bits
- When results of operations exceed the constraints of the precision, we can get overflow
 - **Exercise**: compute $12_{10} + 5_{10}$ with 4 bit operands and 4 bit result is ignore anything beyond 4 bits

• When working with decimals we usually perform "bit growth" intuitively e.g. **9 + 3 = 12** — one more digit in result

Overflow, saturation, truncation

- With computer arithmetic the bit sizes are usually fixed e.g. 4, 8, 16, 32 bits
- When results of operations exceed the constraints of the precision, we can get overflow
 - **Exercise**: compute $12_{10} + 5_{10}$ with 4 bit operands and 4 bit result is ignore anything beyond 4 bits

- Overflows can be problematic, data is essentially corrupted
 - $-12_{10} + 5_{10} = 1_{10}$?
 - Results of summing two positive values could be negative

• When working with decimals we usually perform "bit growth" intuitively e.g. **9 + 3 = 12** — one more digit in result

1	1	0	0
0	1	0	1
0	0	0	1
ed			

11

Overflow, saturation, truncation

- With computer arithmetic the bit sizes are usually fixed e.g. 4, 8, 16, 32 bits
- When results of operations exceed the constraints of the precision, we can get overflow
 - **Exercise**: compute $12_{10} + 5_{10}$ with 4 bit operands and 4 bit result is ignore anything beyond 4 bits

- Overflows can be problematic, data is essentially corrupted
- - Clip the value to the largest (or most negative) value
- **Exercise**: what would be the saturated value of the previous exercise?

• When working with decimals we usually perform "bit growth" intuitively e.g. **9 + 3 = 12** — one more digit in result

1	1	0	0
0	1	0	1
1 0	0	0	1
ed			

• We can saturate to avoid overflows — the result is still "wrong" but is likely to be more useful than the overflowed one

- When results of operations exceed the constraints of the precision, we can get overflow
- With computer arithmetic the bit sizes are usually fixed e.g. 4, 8, 16, 32 bits
- We can increase the bit precision of the result of an operation in an FPGA to compensate for overflow
 - Provided the result is stored in a different memory/register/logic than the operands of smaller width

- Exercise: assuming unsigned integers, what would be the required bit-width for the result of:
 - a 4-bit integer summed with a 4-bit integer?
 - a 4-bit integer summed with a 3-bit integer?
 - a N-bit integer summed with an M-bit integer?

Hint: consider the maximum values of each operand

Bit Growth

- a 4-bit integer multiplied with a 4-bit integer?
- a 4-bit integer multiplied with a 3-bit integer?
- a N-bit integer multiplied with an M-bit integer?

13

- Exercise: assuming unsigned integers, what would be the required bit-width for the result of:
 - a 4-bit integer summed with a 4-bit integer?
 - a 4-bit integer summed with a 3-bit integer?
 - a N-bit integer summed with an M-bit integer?
- General rules to guarantee no overflow:
 - for addition & subtraction the result bitwidth should be $1 + \max(N,M)$
 - for multiplication the result bitwidth should be N + M

Bit Growth

- a 4-bit integer multiplied with a 4-bit integer?
- a 4-bit integer multiplied with a 3-bit integer?
- a N-bit integer multiplied with an M-bit integer?

14

Two's complement

- So far we used *unsigned* integers, but that's limiting
- How do we represent negative values with fixed size binary numbers?
- Most common method: two's complement
- To work out the two's complement representation of a negative number (e.g. -6₁₀ in 4 bits)
 - Start with the binary representation of the *absolute* value: $6_{10} = 0b0110$
 - *Invert* all of the bits: **0b0110** \rightarrow **0b1001**
 - Add 1 to the value, *ignoring* overflow: **0b1001** \rightarrow **0b1010**
- Observations:

 - We can do arithmetic with numbers in this representation
 - Exercise: take two 4 bit two's complement numbers $\mathbf{x} = +3_{10}$, $\mathbf{y} = -1_{10}$ and compute $\mathbf{x} + \mathbf{y}$ in binary

- The most significant bit always denotes the sign — leading $0 \rightarrow \text{positive}$ or zero, leading $1 \rightarrow \text{negative}$ (but not sign & value).

Two's complement exercise

• Exercise: take two 4 bit two's complement numbers $\mathbf{x} = +3_{10}$, $\mathbf{y} = -1_{10}$ and compute $\mathbf{x} + \mathbf{y}$ in binary

- Exercise: what are the maximum and minimum values of a:
 - 4 bit unsigned integer
 - 4 bit two's complement integer
 - 7 bit two's complement integer

Sanity check: $0b0011 = 3_{10}$ $0b1111 = -1_{10}$ 3 - 1 = 2 $2_{10} = 0b0010$ \checkmark

Two's complement exercise

• Exercise: take two 4 bit two's complement numbers $\mathbf{x} = +3_{10}$, $\mathbf{y} = -1_{10}$ and compute $\mathbf{x} + \mathbf{y}$ in binary

Exercise: what are the maximum and minimum values (e)

Sanity check: $0b0011 = 3_{10}$ $0b1111 = -1_{10}$ 3 - 1 = 2 $2_{10} = 0b0010$ \checkmark

Max = 15, Min = 1

Max = 7, Min = -8

Max = 63, Min = -64

FPGA School - Sioni Summers

17

- On CPU / GPU we need to work with number types that are native to the hardware
 - We can emulate other number types but it arithmetic won't run with high performance
- On FPGA we are designing the hardware itself, so we can use any number representation that we like
- We'll see this for ourselves soon, but integer operations are much less resource and latency intensive than floating point
- But what if we want to represent fractions? Enter fixed point
- Fixed point combines some of the convenience of floating point with the low hardware cost of integers
- Recall: floating point is $m \cdot 2^e \rightarrow$ in fixed point the value of exponent is fixed so it doesn't need to be explicitly represented
- Example: 8 bit unsigned fixed point with 4 integer bits, 4 fractional bits, representing 9.3125₁₀

- Exercise: what are the values in base 10 of these 8 bit unsigned fixed-point numbers?
 - What are the maximum and minimum values of the three fixed-point number formats?

- Exercise: what are the values in base 10 of these 8 bit unsigned fixed-point numbers?
 - What are the maximum and minimum values of the three fixed-point number formats?

x = 28.25 Max = 63.75Min = 0.25

X = 0.05517578125Max = 0.12451171875 Min = 0.00048828125

- Exercise: can you generalise the rules for bit-growth of integers to bit-growth of fixed-point?
 - 1) For addition/subtraction and 2) multiplication. Hint: consider maximum and minimum values

 - Recall the integer bit-growth rules, with operand widths 'N' and 'M'
 - for addition & subtraction the result bitwidth should be $1 + \max(N,M)$
 - for multiplication the result bitwidth should be N + M

- Operand 0: F_0 fractional bits, I_0 integer bits ($F_0 + I_0$ width); Operand 1: F_1 fractional bits, I_1 integer bits ($F_1 + I_1$ width)

- Exercise: can you generalise the rules for bit-growth of integers to bit-growth of fixed-point?
 - 1) For addition/subtraction and 2) multiplication. Hint: consider maximum and minimum values

 - Recall the integer bit-growth rules, with operand widths 'N' and 'M'
 - for addition & subtraction the result bitwidth should be $1 + \max(N,M)$
 - for multiplication the result bitwidth should be N + M
- Addition:
 - To safely add/subtract two fixed-point values, align the binary point first (HLS will do this automatically)
 - The result must accommodate the largest integer range and maximum fractional precision
 - Integer bits : $max(I_0, I_1) + 1 // + 1$ for carry
 - Fractional bits: $max(F_0, F_1)$
 - Total width : $max(I_0, I_1) + max(F_0, F_1) + 1$

- Operand 0: F_0 fractional bits, I_0 integer bits ($F_0 + I_0$ width); Operand 1: F_1 fractional bits, I_1 integer bits ($F_1 + I_1$ width)

- Exercise: can you generalise the rules for bit-growth of integers to bit-growth of fixed-point?
 - 1) For addition/subtraction and 2) multiplication. Hint: consider maximum and minimum values

 - Recall the integer bit-growth rules, with operand widths 'N' and 'M'
 - for addition & subtraction the result bitwidth should be $1 + \max(N,M)$
 - for multiplication the result bitwidth should be N + M
- Multiplication:
 - When multiplying two fixed-point numbers, both integer and fractional parts grow
 - The binary point is at the sum of the original positions
 - Integer bits : $I_0 + I_1$
 - Fractional bits: $F_0 + F_1$
 - Total width $: I_0 + I_1 + F_0 + F_1$

- Operand 0: F_0 fractional bits, I_0 integer bits ($F_0 + I_0$ width); Operand 1: F_1 fractional bits, I_1 integer bits ($F_1 + I_1$ width)

- Now we'll get some hands on experience with numerics in High Level Synthesis
- Reminder: why do we use it?
 - Write FPGA designs in C++: lower barrier to entry than HDL
 - Rapid design space exploration (explore resource / latency tradeoffs with ease); realise complex algorithms
- X Typical HLS workflow
 - \mathbb{N} Write C/C++ kernel: my_function.cpp
 - Create testbench: my_function_tb.cpp to simulate inputs/outputs
 - 🔅 Run HLS flow using Vitis HLS:
 - C Simulation: functional correctness check using the testbench HLS C++ code is executed on the CPU
 - C Synthesis: HLS C++ code is synthesized into RTL + resource/latency estimates
 - Co-Simulation: validate generated RTL against testbench clock cycle accurate
- Optimize latency, throughput, and resource usage (LUTs, FFs, DSPs, BRAM)
 - Explore trade-offs using loop unrolling, pipelining, precision tuning

- Structure of a Typical HLS Project
 - \sim my_function.cpp algorithm to be synthesized to FPGA
 - **II** my_function_tb.cpp C++ testbench that drives inputs and checks outputs
 - *m* hls_prj/ directory with reports, logs, RTL, etc. produced from the HLS tool
 - script.tcl automates synthesis/verification in batch mode

open project my proj add files my function.cpp add files -tb my function tb.cpp open solution "solution1" set top my function create clock -period 5 csim design csynth design cosim design

- \swarrow my_function.cpp algorithm to be synthesized to FPGA \rightarrow This is where you describe your logic in standard C++ (with some HLS-specific types)
- Image: The second sec
 - \rightarrow This is the function that Vitis HLS treats as the hardware module interface
 - \rightarrow Must use scalar or array arguments (no dynamic memory, no STL containers)
- 🗱 Use ap_fixed datatypes for fixed-point arithmetic
 - \rightarrow Provided by the ap_fixed.h header
 - \rightarrow Enables precise control of bit widths for resource and accuracy trade-offs
 - 3 ap fixed<16, 5>
 - \rightarrow 16-bit signed number: 5 integer bits, 11 fractional bits
 - 🔢 ap fixed<8, 3, AP RND, AP SAT>
 - \rightarrow 8-bit signed, 3 integer bits, 5 fractional, AP_RND = round to nearest; AP_SAT = saturate on overflow
- **Use #pragma** HLS directives to control synthesis behavior
 - \rightarrow Guide unrolling, pipelining, array partitioning, and interface behavior
 - \rightarrow These affect latency, throughput, and resource usage
- Tomorrow: we'll explore how to use pragmas to tune designs for performance and resource efficiency

• Example HLS top-level function, sum two dimension-8 vectors of 16 bit, 8 integer bit values

```
#include "ap fixed.h"
typedef ap fixed<16,8> data t;
    VectorLoop:
   for (int i = 0; i < 8; ++i) {
        out[i] = in1[i] + in2[i];
```

- When you have all of the ingredients, launch the workflow from the command line with:
 - -vitis hls -f csim.tcl ; vitis hls -f csynth.tcl ; vitis hls -f cosim.tcl
 - This will create a project, run simulation, synthesis, and/or co-simulation as defined in the script

void vec sum(const data t in1[8], const data t in2[8], data t out[8]) {

Analyzing Designs

- After we run C Synthesis and Co Simulation, we generate many reports and also an HLS project
 - All of them contain very useful information for analyzing the design
 - In particular:
 - <project name>/<solution name>/syn/report/csynth.rpt
 - <project name>/<solution name>/sim/report/<top name>_cosim.rpt
 - These reports can also be viewed in the GUI (next slides)

+ Performance & Resource Estimates:

PS: '+' for module; 'o' for loop; '*' for dataflow

+ Modules & Loops	++ Issue Type	Slack	Latency (cycles)	Latency (ns)	Iteration Latency	Interval	+ Trip Count	+ Pipelined	BRAM	++ DSP	 FF	LUT
+sum o VectorLoop	+ = = = = + + 	0.87 7.30	XX XX X	XXX.XXX XXX.XXX	XX XX XX	+XX XX XX	+ XX XX +	y/n y/n	XX XX	+ = = = = + XX XX + = = = +	XX XX XX	XX XX XX

- You may use whichever file editor you like, but the HLS GUI does provide some useful auto-completion

HLS GUI

• We will also use the HLS GUI for some analysis, to open: run **vitis hls** -classic (classic option for \geq 2023.2)

- The analysis after running synthesis is especially useful e.g. schedule viewer
 - did the design map to HW as expected? Where are the bottlenecks in the design impacting performance?

HLS GUI

				1
r(s	oluti	on) ×		1
2	•	×	3	
1				
ii=	1			
7				
	~			
ige	s 🔒	Git Re	epositories 😓 Modules/Loops 📴 C Source 🗙	
_t	: out	[8]) +	{	

