Introductory course to VHDL and HLS FPGA
programming
Day 4

Sioni Summers (CERN)
26 June 2025 - Milan

Introduction

e High Level Synthesis is a new paradigm in programming FPGAS
- Write algorithms — synthesis tool determines the hardware
- Input using C++ — higher level abstraction than HDLs

- Productivity ~ — create working designs faster
- Sophistication ~/ — create advanced designs with complicated algorithms

e But working with HLS still requires expertise, and a foundation in HDL is a great starting point
¢ Main topics of this part:
- Number representations and arithmetic

- Loop Analysis and Optimization

26/6/2025 FPGA School - Sioni Summers

e Staff at CERN working on Level 1 Trigger Upgrade for CMS experiment

About me

- Mostly designing and implementing detector reconstruction algorithms for

Level 1 Trigger

- Track reconstruction, vertexing, particle flow, jets, jet tagging, ML

- Task leader in Next Generation Triggers project

e PhD High Energy Physics Imperial College London

- Thesis: “Applications of FPGAS to triggering in particle physics”

- Designing physics algorithms with high level languages for FPGAs

¢ Also deploying Machine Learning into FPGAs for low latency

- hlsdml coordinator 2020-2022, creator and maintainer of conifer

¢ | eading Edge SpAlce project at CERN: ML in FPGA for satellites

8 March 2024

Fast ML at the Edge - Sioni Summers

] sioni@cern.ch

@ sioni.web.cern.ch

C) @thesps
& @ssummers

mailto:sioni@cern.ch
http://sioni.web.cern.ch
http://github.com/thesps
http://gitlab.cern.ch/ssummers
mailto:sioni@cern.ch
mailto:sioni@cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch

CMS Phase 2 Simulation Preliminary PU 200 (14 TeV)

O ne F P G A C ase St U d y LY R
7 | 4 |
o) | i
| + .
e For the CMS Phase 2 Upgrade we are designing jet reconstruction and tagging | whmmww i
0.6 * } -
: ! Z
- FInd cones of particles from the decay of a parent particle, and use ML to predict ** ' :
the parent particle type, make CMS will collect data for important event types (e.g. | | | _
HH—bbbb) T]
| e i
¢ | ess than 1 ps from particles input to tagged jets output HTo® [GeV]
* \We used both HLS and VHDL, and his4ml for the Neural Network : TR
10 CMSPhseZSimu/ation Prelimina 14 TeV, 200 PU -§:E: % Particle receiving N g
S T t 3
g . e Jet tagging (NN) ii
quj m Dense

Global Average

=

i

A

= -
m =1
-~ >
LD -
=] h
> o5
f -

|)' o

Leading Gen jet pt [GeV]

Bl

Hor L [HAYZ2 HAY3

O

0.6 - | I
F pointwise | a
04 QCD 200 PU L YYV:VVY :
' D& SC4, AK4 pr > 50 GeV ¢ § IR o
O & SC4, AK4 pr > 100 GeV 39 : .
0.2 O & SC4, AK4 pr > 150 GeV g VVVVVV b 15 _
D@ SC4, AK4 pr > 200 GeV - x| | < ki
ot . = = ¥ -]
000 0060 AlE e 1
00 ‘
0 100 200 300 400 500 600 e = ; 1 il
., > -
-

30 [BEOY1
wl
R0 7l (PR 1S/ T3 rilke

H5Y0 p{SY1

vy
Kb

26/6/2025 FPGA School - Sioni Summers

Part 1

Numerics: Fixed Point Arithmetic

CMS
CA

=S

A

e On your CPU (and GPU) you are probably familiar with integer and floating point numerical formats
¢ Integer represents integer values in a fixed number of bits (e.g. 32, 16, 8)
¢ Foating point represents values with a mantissa and exponent : m - 2¢

- |t’s like scientific notation with binary

e Simplified examples, representing the number 113, ignoring sign (positive values only)

_ 102 101 100 Base 10 floating point 100 10- 10-2 100 10
Base 10 integer (3 digit mantissa, 10

11310 ’] 3 2 digit exponent)
1.13 x 1020

_ 27 26 25 24 23 22 21 20 Base 2 floating point
Base 2 integer (4 bit mantissa, 23 22 21 20 23 22 21 20

14 x 28 =112 1 1 1 0 1 0 0 0

(Approximate)

26/6/2025 FPGA School - Sioni Summers

Operations

e On your CPU (and GPU) you are probably familiar with integer and floating point numerical formats

¢ Integer represents integer values in a fixed number of bits (e.g. 32, 16, 8)

¢ Foating point represents values with a mantissa and exponent : m - 2¢

e Demo:

- Suppose we have decimal integers x = 15 and y = 27

- Compute z = x + y using “long hand”

Y

Z

26/6/2025 FPGA School - Sioni Summers

Integers

e On your CPU (and GPU) you are probably familiar with integer and floating point numerical formats
¢ Integer represents integer values in a fixed number of bits (e.g. 32, 16, 8)

¢ Foating point represents values with a mantissa and exponent : m - 2¢

’ Note: Ob prefix

- Suppose we have 4-bit unsigned (positive) integers x = 0b0011 and y = 0b0101 means binary number

- Compute z x + y — usethe “long hand” method and remember to “carry the 1”

26/6/2025 FPGA School - Sioni Summers

Answer

e On your CPU (and GPU) you are probably familiar with integer and floating point numerical formats

Integer addition

¢ Integer represents integer values in a fixed number of bits (e.g. 32, 16, 8)

¢ Foating point represents values with a mantissa and exponent : m - 2¢

26/6/2025

- Suppose we have 4-bit unsigned (positive) integers x = 0b0011 and y = 0b0101

’ Note: 0b prefix
means binary number

- Compute ' z = x + y — use the “long hand” method and remember to “carry the 1”
« 0 0 3 Sanity check: .
0b0011 = 310 Note: subscriptio
Ob0101 =510 = means decimal number
Yy 0 1 0 1 3458
L 810 = 0b1000
Z 1 0 0 0

FPGA School - Sioni Summers

4

Overflow, saturation, truncation

e \When working with decimals we usually perform “bit growth” intuitively e.g.. 9 + 3 = 12 — one more digit in result

o \\ith computer arithmetic the bit sizes are usually fixed e.g. 4, 8, 16, 32 bits
* \When results of operations exceed the constraints of the precision, we can get overflow

- ;. compute 1210 + 510 with 4 bit operands and 4 bit result ie ignore anything beyond 4 bits

26/6/2025 FPGA School - Sioni Summers

10

Overflow, saturation, truncation

e \When working with decimals we usually perform “pbit growth” intuitively e.g.. 9 + 3 = 12 — one more digit in result

o \\ith computer arithmetic the bit sizes are usually fixed e.g. 4, 8, 16, 32 bits
* \When results of operations exceed the constraints of the precision, we can get overflow

- ;. compute 1210 + 510 with 4 bit operands and 4 bit result ie ignore anything beyond 4 bits

X 1 1 0 0
Yy 0 1 0 1

/ 1 0 0 0 1

e Overflows can be problematic, data is essentially corrupted
- 1210+ 510 =110 7

- Results of summing two positive values could be negative

26/6/2025 FPGA School - Sioni Summers

11

Overflow, saturation, truncation

e \When working with decimals we usually perform “pbit growth” intuitively e.g.. 9 + 3 = 12 — one more digit in result

o \\ith computer arithmetic the bit sizes are usually fixed e.g. 4, 8, 16, 32 bits
* \When results of operations exceed the constraints of the precision, we can get overflow

- ;. compute 1210 + 510 with 4 bit operands and 4 bit result ie ignore anything beyond 4 bits

X 1 1 0 0
Yy 0 1 0 1

/ 1 0 0 0 1

e Overflows can be problematic, data is essentially corrupted

¢ \\e can saturate to avoid overflows — the result is still “wrong” but is likely to be more useful than the overflowed one

- Clip the value to the largest (or most negative) value

o . what would be the saturated value of the previous exercise”

26/6/2025 FPGA School - Sioni Summers

12

Bit Growth

* \When results of operations exceed the constraints of the precision, we can get overflow
o \\Vith computer arithmetic the bit sizes are usually fixed e.g. 4, 8, 16, 32 bits

¢ \\le can increase the bit precision of the result of an operation in an FPGA to compensate for overflow

Provided the result is stored in a different memory/register/logic than the operands of smaller width

. : assuming unsigned integers, what would be the required bit-width for the result of:
- a 4-bit integer summed with a 4-bit integer”? - a 4-bit integer multiplied with a 4-bit integer?
- a 4-bit integer summed with a 3-bit integer? - a 4-bit integer multiplied with a 3-bit integer?
- a N-bit integer summed with an M-bit integer”? - a N-bit integer multiplied with an M-bit integer?

. consider the maximum values of each operand

26/6/2025 FPGA School - Sioni Summers

13

Answer

Bit Growth

: assuming unsigned integers, what would be the required bit-width for the result of:

- a 4-bit integer summed with a 4-bit integer”?
- a 4-bit integer summed with a 3-bit integer?

- a N-bit integer summed with an M-bit integer?

e (General rules to guarantee no overflow:

26/6/2025

- a 4-bit integer multiplied with a 4-bit integer?
- a 4-bit integer multiplied with a 3-bit integer?

- a N-bit integer multiplied with an M-bit integer”?

- for addition & subtraction the result bitwidth should be 1 + max(N,M)

- for multiplication the result bitwidth should be N + M

FPGA School - Sioni Summers

14

Two’s complement

e S0 far we used unsigned integers, but that’s limiting
e How do we represent negative values with fixed size binary numbers?
¢ Most common method: two’s complement
e [0 work out the two’s complement representation of a negative number (e.g. -610 in 4 bits)
- Start with the binary representation of the absolute value: 610 = 0b0110
- Invert all of the bits: ' 0b0110 —» 0b1001
- Add 1 to the value, ignoring overflow: 0b1001 — 0b1010
e Observations:
- The most significant bit always denotes the sign — leading O — positive or zero, leading 1 — negative (but not sign & value)
- We can do arithmetic with numbers in this representation

- : take two 4 bit two’s complement numbers x = +310 , ¥y = -110 andcompute x + y In binary

26/6/2025 FPGA School - Sioni Summers

15

Two’s complement exercise

o . take two 4 bit two’s complement numbers x = +310 ,
X 0 0 1 1
Yy 1 1 1 1
1 1 1 1
Z 0 0 1 0

e Exercise: what are the maximum and minimum values of a:

- 4 bit unsigned integer

- 4 bit two’s complement integer

- 7 bit two’s complement integer

y:

26/6/2025 FPGA School - Sioni Summers

-1,0 andcompute x + y

Sanity check:
0b0011 = 340
Ob1111 = -14¢
3-1=2
210 = 0b0010
v

N binary

16

Two’s complement exercise

e Cxercise: take two 4 bit two’s complement numbers x = 4310 , ¥y = -110 andcompute x + y
« 0 0 ’ 3 Sanity check:
0b0011 = 340
y 1 1 1 1 Ob;‘l:l;l fé110
T T 210 = 0b0010
Z 0 0 1 0

e - xercise: what are the maximum and minimum values (excluding zero) of a:

- 4 bit unsigned integer Max = 15, Min = 1

- 4 bit two’s complement integer Max = 7, Min = -8

- 7 bit two’s complement integer Max = 63, Min = -64

26/6/2025 FPGA School - Sioni Summers

v

N binary

17

Fixed Point

e On CPU / GPU we need to work with number types that are native to the hardware

- We can emulate other number types but it arithmetic won’t run with high performance
e On FPGA we are designing the hardware itself, so we can use any number representation that we like
o \\We'll see this for ourselves soon, but integer operations are much less resource and latency intensive than floating point
e But what if we want to represent fractions”? Enter fixed point
¢ Fixed point combines some of the convenience of floating point with the low hardware cost of integers
e Recall: floating point is m - 2¢ = In fixed point the value of exponent is fixed so it doesn’t need to be explicitly represented

e Example: 8 bit unsigned fixed point with 4 integer bits, 4 fractional bits, representing 9.31251¢
— Integer — | —— Fraction ——

23 22 2t 20 .21 22 23 24

Binary point / radix point

26/6/2025 FPGA School - Sioni Summers

18

26/6/2025

Fixed Point

. what are the values in base 10 of these 8 bit unsigned fixed-point numlbers”?

- What are the maximum and minimum values of the three fixed-point number formats?

— Integer —— ;| —— Fraction ——

23 22 2t 20 21 22 23 24

Integer . Fraction

2> 24 23 22 21 20 21 22

Fraction

24 95 926 927 928 929 9211 9-11

FPGA School - Sioni Summers

Example
— Integer —— ;| —— Fraction ——

23 22 2t 20 21 22 23 24

=9 .312510

19

Fixed Point

e - xercise: what are the values in base 10 of these 8 bit unsigned fixed-point numbers?

Example
- What are the maximum and minimum values of the three fixed-point number formats? _____ Integer —— — Fraction ——
—— Integer —— ! —— Fraction —— 2% 22 20 20 2 2= 2% 2
23 22 2¢v 20 21 D22 23 24 X =7.0625
1 1 1 0 1
a. Max = 15.9375 0 0 0
Min = 0.0625
0 1 1 1 0 0 0 1 =9.312510
Integer . Fraction
25 24 23 22 21 20 21 D2 X = 28.25
b. Max = 63.75
o 1 1 1 0 0 0 1 Min = 0.25
Fraction
24 25 26 27 28 29 211 2-11 X =0.05517578125
C. Max = 0.12451171875
0 1 1 1 0 0 0 1 Min = 0.00048828125

26/6/2025 FPGA School - Sioni Summers 20

26/6/2025

Fixed Point

. can you generalise the rules for bit-growth of integers to bit-growth of fixed-point?
- 1) For addition/subtraction and 2} multiplication. . consider maximum and minimum values
- Operand O: Fy, fractional bits, Iq integer bits (Fo + I, width); Operand 1: F; fractional bits, I: integer bits (F1 + I1 width)
- Recall the integer bit-growth rules, with operand widths "N’ and ‘M’
- for addition & subtraction the result bitwidth should be 1 + max(N,M)

- for multiplication the result bitwidth should be N + M

FPGA School - Sioni Summers

21

Fixed Point

. . can you generalise the rules for bit-growth of integers to bit-growth of fixed-point?
- 1) For addition/subtraction and 2} multiplication. . consider maximum and minimum values
- Operand O: Fy, fractional bits, Iq integer bits (Fo + I, width); Operand 1: F; fractional bits, I: integer bits (F1 + I1 width)
- Recall the integer bit-growth rules, with operand widths "N’ and ‘M’
- for addition & subtraction the result bitwidth should be 1 + max(N,M)
- for multiplication the result bitwidth should be N + M
e Addition:
- To safely add/subtract two fixed-point values, align the binary point first (HLS will do this automatically)
- The result must accommodate the largest integer range and maximum fractional precision
- Integer bits : max(Io, I1)+ 1 // +1 for carry
- Fractional bits: max(Fq, F1)

- Total width : max(Io, I1) + max(Fo, F1) + 1

26/6/2025 FPGA School - Sioni Summers

22

Fixed Point

. . can you generalise the rules for bit-growth of integers to bit-growth of fixed-point?
- 1) For addition/subtraction and 2} multiplication. . consider maximum and minimum values
- Operand O: Fy, fractional bits, Iq integer bits (Fo + I, width); Operand 1: F; fractional bits, I: integer bits (F1 + I1 width)
- Recall the integer bit-growth rules, with operand widths "N’ and ‘M’
- for addition & subtraction the result bitwidth should be 1 + max(N,M)
- for multiplication the result bitwidth should be N + M
e Multiplication:
- When multiplying two fixed-point numbers, both integer and fractional parts grow
- The binary point is at the sum of the original positions
- Integer bits : Io+ I
- Fractional bits: ¥y + F

- Totalwidth :Ig+I;1+Fo+ Fy

26/6/2025 FPGA School - Sioni Summers

23

Introduction to High Level Synthesis

e Now we’ll get some hands on experience with numerics in High Level Synthesis
e Reminder: why do we use it”?
- Write FPGA designs in C++: lower barrier to entry than HDL
- Rapid design space exploration (explore resource / latency tradeoffs with ease); realise complex algorithms

o X Typical HLS workflow

- 9\, Write C/C++ kernel: my_function.cpp

- # Create testbench: my_function_tb.cpp to simulate inputs/outputs

- 4@ Run HLS flow using Vitis HLS:
- G Simulation: functional correctness check using the testbench — HLS C++ code is executed on the CPU
- C Synthesis: HLS C++ code is synthesized into RTL + resource/latency estimates
- Co-Simulation: validate generated RTL against testbench — clock cycle accurate

e Optimize latency, throughput, and resource usage (LUTs, FFs, DSPs, BRAM)

- Explore trade-offs using loop unrolling, pipelining, precision tuning

26/6/2025 FPGA School - Sioni Summers

24

Introduction to High Level Synthesis

e [0 Structure of a Typical HLS Project
-\ my_function.cpp — algorithm to be synthesized to FPGA
- nul my_function_tb.cpp — C++ testbench that drives inputs and checks outputs

- [his_prj/ — directory with reports, logs, RTL, etc. produced from the HLS tool

EEEEEEE

open project my proj

add files my function.cpp

add files -tb my function tb.cpp
open solution "solutionl”

set top my function

create clock -period 5

csim design

csynth design

cosim design

26/6/2025 FPGA School - Sioni Summers

25

Introduction to High Level Synthesis

e “\ my_function.cpp — algorithm to be synthesized to FPGA
— This is where you describe your logic in standard C++ (with some HLS-specific types)

e @ Define a “top-level” function

— This is the function that Vitis HLS treats as the hardware module interface
— Must use scalar or array arguments (no dynamic memory, no STL containers)

Use ap_fixed datatypes for fixed-point arithmetic

— Provided by the ap_fixed.h header
— Enables precise control of bit widths for resource and accuracy trade-offs

e /ap fixed<16, 5>
— 16-bit signed number: 5 integer bits, 11 fractional bits

e . Jap fixed<8, 3, AP RND, AP SAT>
— 8-bit signed, 3 integer bits, 5 fractional, AP_RND = round to nearest; AP_SAT = saturate on overflow

e _ Use #pragma HLS directives to control synthesis behavior

— Guide unrolling, pipelining, array partitioning, and interface behavior
— [These affect latency, throughput, and resource usage

26/6/2025 FPGA School - Sioni Summers

20

Introduction to High Level Synthesis

e Example HLS top-level function, sum two dimension-8 vectors of 16 bit, 8 integer bit values

#include “ap fixed.h”
typedef ap fixed<lo, 8> data t;

vold vec sum(const data t 1inl[8], const data t 1nZ2[38], data t out[8])

VectorLoop:
for (int 1 = 0; 1 < 8; ++1i) {
out[i] = inl[i] + in2[i];

¢ \When you have all of the ingredients, launch the workflow from the command line with:

-vitis hls -f csim.tcl ; vitis hls -f csynth.tcl ; vitis hls -f cosim.tcl

- This will create a project, run simulation, synthesis, and/or co-simulation as defined in the script

26/6/2025 FPGA School - Sioni Summers

{

27

Analyzing Designs

e After we run C Synthesis and Co Simulation, we generate many reports and also an HLS project
- All of them contain very useful information for analyzing the design
- |In particular:

- ® <project name>/<solution name>/syn/report/csynth.rpt
- ® <project name>/<solution name>/sim/report/<top name>_cosim.rpt

- These reports can also be viewed in the GUI (next slides)

+ Performance & Resource Estimates:

PS: '+' for module; 'o' for loop; '*' for dataflow

e —— - - f————————— f————————— f————————— f———————— - F————————— - -t ——————— f————————— +————— +

| Modules | Issue] | Latency | Latency | Iteration]| | Trip | | | | | | |

| & Loops | Type | Slack]| (cycles) | (ns) | Latency | Interval| Count| Pipelined| BRAM | DSP| FF | LUT | URAM |

e —— - - f————————— f————————— f————————— f———————— - F————————— - -t ——————— f————————— +————— +

| + vec sum | — | 0.87] XX | XXX . XXX | XX | XX | XX | v/n| XX | XX | XX | XX | XX |

| o VectorLoop | — | 7.30] X | XXX . XXX | XX | XX | XX | v/n| XX | XX | XX | XX | XX |

e —— - - f————————— f————————— f————————— f———————— - F————————— - -t ——————— f————————— +————— +
26/6/2025 FPGA School - Sioni Summers 28

e \We will also use the HLS GUI for some analysis, to open: run vitis hls -classic (classic option for = 2023.2)

HLS GUI

e You may use whichever file editor you like, but the HLS GUI does provide some useful auto-completion

26/6/2025

File Edit Project Solution Window Help

|

s & :»

B Explorer x 8 Module Hierarchy

v @ ArithmeticProj
» @ Includes
v = Source
B vec_sum.cpp
b 1= Test Bench
» 3 solution

Al Flow Navigator x

w C SIMULATION
* Run C Simulation
P Reports & Viewers
w C SYNTHESIS
» Run C Synthesis
w Reports & Viewers
Report
Function Call Graph
Schedule Viewer
Dataflow Viewe
w C/RTL COSIMULATION
* Run Cosimulation
w Reports & Viewers
Report
Function Call Graph
Timeline Trace

—ARARL CRACAITATIAM

-
Y

1
|
|

g Synthesis Summary(solution)

[
VectorLoop:

[i] =

B Console 'J Errors 6 Wa

1ings

vec_sum.cpp X

" ol
M !

- = a- Outline x n# Directive

I! r = : .
vec sum.h

@ vec_sum(const data t[], const data t

Guidance x W Properties Man Pages B Git Repositories %2 Mo

[[B 17 Guidance-infos E 0 Guidance-Warnings 0 Guidance-Errors =

Name

w [@ All Categories
v [SCHEDULE
| [HLS 200-1470]
v [@ RUNTIME
| [HLS 200-111]

solution x

Web Help

Detalls

Pipelining result : Target Il = NA, Final Il = 1, Depth = 2, loop "VectorLoop'

Finished Command cosim_design CPU user time: 14.57 seconds. CPU system time: 1.94 seconds. Elapsed time: 16.73 seconds; current allocated memory: 11.559 MB.

FPGA School - Sioni Summers

29

HLS GUI

e [he analysis after running synthesis is especially useful e.g. schedule viewer

- did the design map to HW as expected? Where are the bottlenecks in the design impacting performance?

File Edit Project Solution Window Help
© I8 i> iz i@ |

B Explorer & Module Hierarchy x = ® g Synthesis Summary(solution) B vec sum.cpp = Schedule Viewer(solution) x

n O B | - .
vec sum | Focus i+ 4 00 0 B @
Name

| Operation\Control Step
w O vec_sum |

B vectorLoop | ifalloca)

| i_write_InS({write)
br_In5(br)

v \ectorLoop

i_1(read)
icmp_In5{icmp)
add_In5(+)

br_In5(br)
i_cast(zext)
in1_addr(getelementptr)
in1_load(read)
in2_addr(getelementptr)

in2_load(read)
i_write_In5({write)

NIl Flow Navigator x out r_addr(getelementptr) Goto Source
out_r_addr_write_In6({write)
w C SIMULATION 4 br_In5(br)
» Run C Simulation
P Reports & Viewers
w+ C SYNTHESIS
» Run C Synthesis

+ Reports & Viewers

Report 8 Console ¥ Errors & Warnings Guidance M Properties Man Pages § Git Repositories %3 Modules/Loops B CSource x
Function Call Graph

Schedule Viewer

Pis WNOTFK S a [edl

Dataflow Viewer
w C/RTL COSIMULATION (
» Run Cosimulation VectorLoop:
w Reports & Viewers \ :
Report }
Function Call Graph
Timeline Trace

Wave Viewer

— LAl ERAERMTATIAL

26/6/2025 FPGA School - Sioni Summers

