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Introduction
• High Level Synthesis is a new paradigm in programming FPGAs 

- Write algorithms → synthesis tool determines the hardware 

- Input using C++ — higher level abstraction than HDLs 

- Productivity 📈 — create working designs faster 

- Sophistication 📈 — create advanced designs with complicated algorithms 

• But working with HLS still requires expertise, and a foundation in HDL is a great starting point 

• Main topics of this part: 

- Number representations and arithmetic 

- Loop Analysis and Optimization
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About me
• Staff at CERN working on Level 1 Trigger Upgrade for CMS experiment 

- Mostly designing and implementing detector reconstruction algorithms for 
Level 1 Trigger 

- Track reconstruction, vertexing, particle flow, jets, jet tagging, ML 

- Task leader in Next Generation Triggers project 

• PhD High Energy Physics Imperial College London 

- Thesis: “Applications of FPGAs to triggering in particle physics” 

- Designing physics algorithms with high level languages for FPGAs 

• Also deploying Machine Learning into FPGAs for low latency 

- hls4ml coordinator 2020-2022, creator and maintainer of conifer 

• Leading Edge SpAIce project at CERN: ML in FPGA for satellites
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One FPGA Case Study
• For the CMS Phase 2 Upgrade we are designing jet reconstruction and tagging 

- Find cones of particles from the decay of a parent particle, and use ML to predict 
the parent particle type, make CMS will collect data for important event types (e.g. 
HH→bbbb) 

• Less than 1 μs from particles input to tagged jets output 

• We used both HLS and VHDL, and hls4ml for the Neural Network
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Particle receiving 
Jet finding 

Jet tagging (NN)



Part 1
Numerics: Fixed Point Arithmetic
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• On your CPU (and GPU) you are probably familiar with integer and floating point numerical formats 

• Integer represents integer values in a fixed number of bits (e.g. 32, 16, 8) 

• Floating point represents values with a mantissa and exponent : m · 2e 

- It’s like scientific notation with binary 

• Simplified examples, representing the number 113, ignoring sign (positive values only)
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27 26 25 24 23 22 21 20

0 1 1 1 0 0 0 1

102 101 100

1 1 3

Base 10 integer 
11310

Base 2 integer 
0b01110001

100 10-1 10-2

1 1 3·
· 10^

100 10-1

2 0·

Base 10 floating point 
(3 digit mantissa, 
2 digit exponent) 

1.13 ⨉ 102.0

23 22 21 20

1 1 1 0
· 2^

23 22 21 20

1 0 0 0

Base 2 floating point 
(4 bit mantissa, 
4 bit exponent) 
14 ⨉ 28 = 112 

(Approximate)
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Operations
• On your CPU (and GPU) you are probably familiar with integer and floating point numerical formats 

• Integer represents integer values in a fixed number of bits (e.g. 32, 16, 8) 

• Floating point represents values with a mantissa and exponent : m · 2e 

• Demo: 

- Suppose we have decimal integers  x = 15  and  y = 27  

- Compute  z = x + y  using “long hand”

7

X 1 5

Y 2 7

Z 4 2
1 Carry
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Integers
• On your CPU (and GPU) you are probably familiar with integer and floating point numerical formats 

• Integer represents integer values in a fixed number of bits (e.g. 32, 16, 8) 

• Floating point represents values with a mantissa and exponent : m · 2e 

• Exercise: 

- Suppose we have 4-bit unsigned (positive) integers  x = 0b0011  and  y = 0b0101  

- Compute  z = x + y  — use the “long hand” method and remember to “carry the 1”
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Note: 0b prefix

 means binary number
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Overflow, saturation, truncation
• When working with decimals we usually perform “bit growth” intuitively e.g.  9 + 3 = 12  — one more digit in result 

• With computer arithmetic the bit sizes are usually fixed e.g. 4, 8, 16, 32 bits 

• When results of operations exceed the constraints of the precision, we can get overflow 

- Exercise: compute 1210 + 510 with 4 bit operands and 4 bit result ie ignore anything beyond 4 bits

9
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Bit Growth
• When results of operations exceed the constraints of the precision, we can get overflow 

• With computer arithmetic the bit sizes are usually fixed e.g. 4, 8, 16, 32 bits 

• We can increase the bit precision of the result of an operation in an FPGA to compensate for overflow 

- Provided the result is stored in a different memory/register/logic than the operands of smaller width 

• Exercise: assuming unsigned integers, what would be the required bit-width for the result of: 

- a 4-bit integer summed with a 4-bit integer? 

- a 4-bit integer summed with a 3-bit integer? 

- a N-bit integer summed with an M-bit integer?

10

- a 4-bit integer multiplied with a 4-bit integer? 

- a 4-bit integer multiplied with a 3-bit integer? 

- a N-bit integer multiplied with an M-bit integer?

Hint: consider the maximum values of each operand
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Two’s complement
• So far we used unsigned integers, but that’s limiting 

• How do we represent negative values with fixed size binary numbers? 

• Most common method: two’s complement 

• To work out the two’s complement representation of a negative number (e.g. -610 in 4 bits) 

- Start with the binary representation of the absolute value:  610 = 0b0110  

- Invert all of the bits:  0b0110 → 0b1001  

- Add 1 to the value, ignoring overflow:  0b1001 → 0b1010  

• Observations: 

- The most significant bit always denotes the sign — leading 0 → positive or zero, leading 1 → negative (but not sign & value) 

- We can do arithmetic with numbers in this representation 

- Exercise: take two 4 bit two’s complement numbers  x = +310 ,  y = -110  and compute  x + y  in binary

11
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Fixed Point
• On CPU / GPU we need to work with number types that are native to the hardware 

- We can emulate other number types but it arithmetic won’t run with high performance 

• On FPGA we are designing the hardware itself, so we can use any number representation that we like 

• We’ll see this for ourselves soon, but integer operations are much less resource and latency intensive than floating point 

• But what if we want to represent fractions? Enter fixed point 

• Fixed point combines some of the convenience of floating point with the low hardware cost of integers 

• Recall: floating point is m · 2e → in fixed point the value of exponent is fixed so it doesn’t need to be explicitly represented 

• Example: 8 bit unsigned fixed point with 4 integer bits, 4 fractional bits, representing 9.312510

12

23 22 21 20 2-1 2-2 2-3 2-4

1 0 0 1 0 1 0 1

FractionInteger

·

·

Binary point / radix point
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Fixed Point
• Exercise: what are the values in base 10 of these 8 bit unsigned fixed-point numbers? 

- What are the maximum and minimum values of the three fixed-point number formats?
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23 22 21 20 2-1 2-2 2-3 2-4

0 1 1 1 0 0 0 1

25 24 23 22 21 20 2-1 2-2

0 1 1 1 0 0 0 1

2-4 2-5 2-6 2-7 2-8 2-9 2-11 2-11

0 1 1 1 0 0 0 1

FractionInteger

FractionInteger

Fraction

23 22 21 20 2-1 2-2 2-3 2-4

1 0 0 1 0 1 0 1

FractionInteger

= 9 .312510

a.

b.

c.

Example
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Fixed Point
• Exercise: can you generalise the rules for bit-growth of integers to bit-growth of fixed-point? 

- 1) For addition/subtraction and 2) multiplication. Hint: consider maximum and minimum values 

- Operand 0: F0 fractional bits, I0 integer bits (F0 + I0 width); Operand 1: F1 fractional bits, I1 integer bits (F1 + I1 width) 

- Recall the integer bit-growth rules, with operand widths ’N’ and ‘M’ 

- for addition & subtraction the result bitwidth should be 1 + max(N,M) 

- for multiplication the result bitwidth should be N + M

14
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Introduction to High Level Synthesis
• Now we’ll get some hands on experience with numerics in High Level Synthesis 

• Reminder: why do we use it? 

- Write FPGA designs in C++: lower barrier to entry than HDL 

- Rapid design space exploration (explore resource / latency tradeoffs with ease); realise complex algorithms 

•🛠 Typical HLS workflow 

- ✏ Write C/C++ kernel: my_function.cpp 

- 🧪 Create testbench: my_function_tb.cpp to simulate inputs/outputs 

- ⚙ Run HLS flow using Vitis HLS: 

- C Simulation: functional correctness check using the testbench — HLS C++ code is executed on the CPU 

- C Synthesis: HLS C++ code is synthesized into RTL + resource/latency estimates 

- Co-Simulation: validate generated RTL against testbench — clock cycle accurate 

• Optimize latency, throughput, and resource usage (LUTs, FFs, DSPs, BRAM) 

- Explore trade-offs using loop unrolling, pipelining, precision tuning 

15
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Introduction to High Level Synthesis
•📁 Structure of a Typical HLS Project 

- 🔧 my_function.cpp — algorithm to be synthesized to FPGA 

- 📊 my_function_tb.cpp — C++ testbench that drives inputs and checks outputs 

- 📂 hls_prj/ — directory with reports, logs, RTL, etc. produced from the HLS tool 

- 🧾 script.tcl — automates synthesis/verification in batch mode

16

open_project my_proj 
add_files my_function.cpp 
add_files -tb my_function_tb.cpp 
open_solution "solution1" 
set_top my_function 
create_clock -period 5 
csim_design 
csynth_design 
cosim_design
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Introduction to High Level Synthesis
• 🔧 my_function.cpp — algorithm to be synthesized to FPGA 
→ This is where you describe your logic in standard C++ (with some HLS-specific types) 

• 🎯 Define a “top-level” function 
→ This is the function that Vitis HLS treats as the hardware module interface 
→ Must use scalar or array arguments (no dynamic memory, no STL containers) 

• 🧮 Use ap_fixed datatypes for fixed-point arithmetic 
→ Provided by the ap_fixed.h header 
→ Enables precise control of bit widths for resource and accuracy trade-offs 

• 🔢 ap_fixed<16, 5> 
→ 16-bit signed number: 5 integer bits, 11 fractional bits 

• 🔢 ap_fixed<8, 3, AP_RND, AP_SAT> 
→ 8-bit signed, 3 integer bits, 5 fractional, AP_RND = round to nearest; AP_SAT = saturate on overflow 

• 🏗 Use #pragma HLS directives to control synthesis behavior 
→ Guide unrolling, pipelining, array partitioning, and interface behavior 
→ These affect latency, throughput, and resource usage 

• 📅 Tomorrow: we'll explore how to use pragmas to tune designs for performance and resource efficiency 

17
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Introduction to High Level Synthesis
• Example HLS top-level function, sum two dimension-8 vectors of 16 bit, 8 integer bit values 

• When you have all of the ingredients, launch the workflow from the command line with: 

- vitis_hls -f csim.tcl ; vitis_hls -f csynth.tcl ; vitis_hls -f cosim.tcl 

- This will create a project, run simulation, synthesis, and/or co-simulation as defined in the script

18

#include “ap_fixed.h” 

typedef ap_fixed<16,8> data_t; 

void vec_sum(const data_t in1[8], const data_t in2[8], data_t out[8]) { 
    VectorLoop: 

for (int i = 0; i < 8; ++i) { 
        out[i] = in1[i] + in2[i]; 
    } 
}
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Analyzing Designs
• After we run C Synthesis and Co Simulation, we generate many reports and also an HLS project 

- All of them contain very useful information for analyzing the design 

- In particular: 

- 📄 <project name>/<solution name>/syn/report/csynth.rpt 

- 📄 <project name>/<solution name>/sim/report/<top name>_cosim.rpt 

- These reports can also be viewed in the GUI (next slides)
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+ Performance & Resource Estimates: 

    PS: '+' for module; 'o' for loop; '*' for dataflow 
    +---------------+------+------+---------+---------+----------+---------+------+----------+------+----+----------+----------+-----+ 
    |    Modules    | Issue|      | Latency | Latency | Iteration|         | Trip |          |      |    |          |          |     | 
    |    & Loops    | Type | Slack| (cycles)|   (ns)  |  Latency | Interval| Count| Pipelined| BRAM | DSP|    FF    |    LUT   | URAM| 
    +---------------+------+------+---------+---------+----------+---------+------+----------+------+----+----------+----------+-----+ 
    |+ vec_sum      |     -|  0.87|       XX|  XXX.XXX|        XX|       XX|    XX|       y/n|    XX|  XX|        XX|        XX|   XX| 
    | o VectorLoop  |     -|  7.30|        X|  XXX.XXX|        XX|       XX|    XX|       y/n|    XX|  XX|        XX|        XX|   XX| 
    +---------------+------+------+---------+---------+----------+---------+------+----------+------+----+----------+----------+-----+ 
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HLS GUI
• We will also use the HLS GUI for some analysis, to open: run vitis_hls -classic (classic option for ≥ 2023.2) 

• You may use whichever file editor you like, but the HLS GUI does provide some useful auto-completion

20
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HLS GUI
• The analysis after running synthesis is especially useful e.g. schedule viewer 

- did the design map to HW as expected? Where are the bottlenecks in the design impacting performance?

21



Presentation - Sioni Summers24/1/2020

Exercise 1
• We’ll work with the project that sums together 8-dimension 

vectors 

•📁 go to directory arithmetic/ 

• Find all of the necessary files for a first HLS project: 

- 🔧 vec_sum.h & vec_sum.cpp — algorithm to be synthesized to 
FPGA 

- 📊 testbench.cpp — C++ testbench that drives inputs and 
checks outputs 

- 🧾 csim.tcl, csynth.tcl, cosim.tcl— automates synthesis/
verification in batch mode 

• Exercise: run the scripts, and browse the reports and Vitis 
HLS GUI 

- What is the latency and resource usage of this design?

22

void vec_sum(const data_t in1[8], 
             const data_t in2[8], 
             data_t out[8]) { 
    for (int i = 0; i < 8; ++i) { 
        out[i] = in1[i] + in2[i]; 
    } 
}

DSP LUT FF BRAM Latency Worst 
Error

Mean 
Error

? ? ? ? ? ? ?
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Exercise 2 & 3
• vec_sum.h has a line: 

- typedef float data_t; that defines that we used floating point for all of the variables 

• Exercise: adapt the function to use fixed point instead 

- Find the necessary number of integer bits to avoid overflow 

- Find the smallest total bit width that keeps the worst error smaller than 0.1 

- Track your experiments in a results table, and plot LUT usage vs error 

- Note running the script overwrites the existing project, so log your results after each run

23

DSP LUT FF BRAM Latency Worst 
Error

Mean 
Error

Width 1 ? ? ? ? ? ? ?

Width 2 ? ? ? ? ? ? ?

Width 3 ? ? ? ? ? ? ?

… … … … … … … …

LUT

M
ea

n 
Er

ro
r

???
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Fixed Point

• It can be useful to use some domain knowledge about the realistic values to constrain the types 

- i.e. grow then shrink 

• Example: d = v · t      distance: meters; time: seconds; velocity: meters per second 

- For a car, suppose v ∈ [0, 50] m/s  (50 m/s ≃ 180 km/h) ; t ∈ [0, 20] s sampling device 

- Then v →  ap_ufixed<10,6>  and t →  ap_ufixed<10,6>  — values up to 63, steps of 1/16 ~ 0.06 

- Bitgrowth multiplication rule yields  ap_ufixed<20, 12>  — values up to 4095 m, steps of 1/256 ~ 0.004 

- But given our constraints the real maximum value could be 1000 m, and 0.004 m is too precise 

- Could clip to  ap_fixed<14, 10, AP_RND, AP_SAT>  for our real range and a reasonable precision, with rounding and 
saturation for safety — values up to 1023 m, steps of 1/16 ~ 0.06 m

24

• The rules for bit-growth are important for understanding 
the types you give to variables in HLS 

- But it’s not the only factor!

• If you have a long sequence of arithmetic operations the 
bit-growth can result in very wide data types 

- Consider that one DSP has one 25 and one 18 bit input 
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Long Exercise 1: Missing Transverse Energy
• Now that you’ve learned the essentials of fixed point arithmetic, it’s time 

to put it to practice with an extended exercise 

• One important quantity that we compute in FPGAs in the CMS Level 1 
Trigger system is Missing Transverse Energy (MET) 

- Due to momentum conservation, the vector sum over particle momenta 
must be zero* 

- If we find a significantly non-zero MET it’s of interest 

- It could be mismeasurement, or a known particle that doesn’t interact 
with the detector e.g. neutrino 

- Or it could be a new type of particle that doesn’t interact with the 
detector 

- * it’s only true in the transverse plane since the colliding particles are 
constituents of the proton, potentially carrying different momenta in the 
longitudinal direction

25
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Exercise
• You need to compute the MET (vector sum) from all of the particles in each 

event 

- An event refers to all of the particles produced from one collision at the LHC 

• A particle is represented as an object with three properties: 

- Transverse momentum — pT 

- Angle at vertex — ɸ 

- ‘Angle’ in longitudinal plane — η  

• MET is the magnitude of the vector sum of particles 

• You are given: 

- a file with particles from 1000 simulated events of a process with real MET* 

- a reference implementation in Python 

26

pT,i

pT,i

pT,i

pT,i

Y

X

ɸ
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Maths functions
• There is a library of math functions for HLS available as #include “hls_math.h” 

- This include implementations of the trigonometric functions you’ll need e.g.  hls::cos ,  hls::sin  ,  hls::sqrt  

- Use them for your first attempt 

- Make a plot to validate the HLS trigonometry on your fixed point against the C++ math trigonometry on floating point 

• In some cases we can be more efficient by preparing a Look Up Table that we can read with an address 

- Fill the table with the ‘ideal’ floating point function during compile / synthesis time 

- Read the table using the runtime data in the FPGA 

- If you have time, see if you can reduce the latency and resource usage of the trigonometry functions by replacing the HLS 
functions with a precomputed table 

- Validate your tables with a plot to compare

27
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Evaluating your results
• In this exercise we will look at three metrics: 

1. Accuracy of the MET calculation against the 
Python reference 

- Aiming for 10 GeV absolute and 2% relative 
maximum difference 

- Use plots and other tools in the provided Python 
notebook to judge 

2. Resources of MET calculation HLS function 

- Use synthesis reports 

3. Latency of MET calculation HLS function 

- Use synthesis reports and cosimulation

28

+--------+--------+-----------+-----------+-----+ 
|  BRAM  |   DSP  |     FF    |    LUT    | URAM| 
+--------+--------+-----------+-----------+-----+ 
|  4 (1%)|  6 (2%)|  2139 (1%)|  4364 (6%)|    -| 
|       -|       -|  1834 (1%)|  3614 (5%)|    -| 
|       -|       -|          -|          -|    -| 
|  4 (1%)|       -|   90 (~0%)|  311 (~0%)|    -| 
|       -|       -|          -|          -|    -| 
+--------+--------+-----------+-----------+-----+

1

+----------+----------+-----------------------------------------------+-----------------------------------------------+----------------------+ 
|          |          |             Latency(Clock Cycles)             |              Interval(Clock Cycles)           | Total Execution Time | 
+   RTL    +  Status  +-----------------------------------------------+-----------------------------------------------+    (Clock Cycles)    + 
|          |          |      min      |      avg      |      max      |      min      |      avg      |      max      |                      | 
+----------+----------+-----------------------------------------------+-----------------------------------------------+----------------------+ 
|      VHDL|        NA|             NA|             NA|             NA|             NA|             NA|             NA|                    NA| 
|   Verilog|      Pass|            428|           1312|           2756|            429|           1313|           2757|               1313303| 
+----------+----------+-----------------------------------------------+-----------------------------------------------+----------------------+

2

3
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Improving your results
• Accuracy of the MET calculation 

- Explore the dataset and reference calculation in Python to choose 
appropriate precision 

- Remember that every operation and variable can have a different precision! 

- The HLS testbench from C Simulation writes a CSV file that the Python 
script can read to compare 

- Use the plots and “np.testing.assert_allclose” cell to evaluate and improve 

- When you change something, save the results to a different filename so 
that you can compare and improve 

• Resources and Latency 

- Use the Schedule viewer and analysis view in Vitis HLS GUI 

- Giving labels to for-loops in HLS C++ can help identify them in reports 

- Defining functions for computation blocks can help identify them in reports

29
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Interfaces
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Introduction
• In the first HLS exercises, we used: 

- C Simulation to interpret the numerical results 

- C Synthesis to evaluate the resource usage and latency 

• But we neglected something important: how the HLS module will communicate with the outside world 

• This section will give a brief overview and an example on the Arty 100T 

- Just to give you a flavour of the options

31
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The basics
• When we run the C Synthesis we produce some RTL output: VHDL or Verilog, can be packaged as an “IP” 

- This RTL has some specific interface and an expected handshaking mechanism 

- Two things define the RTL interface: 

- The function signature of the C++ 

- Any interface directives inside the function

32

entity vec_sum is 
port ( 
    ap_clk : IN STD_LOGIC; 
    ap_rst : IN STD_LOGIC; 
    ap_start : IN STD_LOGIC; 
    ap_done : OUT STD_LOGIC; 
    ap_idle : OUT STD_LOGIC; 
    ap_ready : OUT STD_LOGIC; 
    in1_address0 : OUT STD_LOGIC_VECTOR (2 downto 0); 
    in1_ce0 : OUT STD_LOGIC; 
    in1_q0 : IN STD_LOGIC_VECTOR (10 downto 0); 
    in2_address0 : OUT STD_LOGIC_VECTOR (2 downto 0); 
    in2_ce0 : OUT STD_LOGIC; 
    in2_q0 : IN STD_LOGIC_VECTOR (10 downto 0); 
    out_r_address0 : OUT STD_LOGIC_VECTOR (2 downto 0); 
    out_r_ce0 : OUT STD_LOGIC; 
    out_r_we0 : OUT STD_LOGIC; 
    out_r_d0 : OUT STD_LOGIC_VECTOR (10 downto 0) ); 
end;

void vec_sum(const data_t in1[8], const data_t in2[8], 
data_t out[8]) { 
    VectorLoop: 
    for (int i = 0; i < 8; ++i) { 
        out[i] = in1[i] + in2[i]; 
    } 
}
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Interface types
• HLS abstracts huge flexibility about the interface — full guide from Xilinx “Interfaces of the HLS Design” 

- You can make very big changes about the interface type with small code changes 

- Even for an array, the access pattern of the array in the code will impact the ports 

• The main types of interface: 

- Bare registers, memory ports, streams 

- AXI Protocol (Advanced eXtensible Interface) : AXI4-Lite, AXI4-Stream, AXI4-Master

33

• Bare registers, memory ports, streams: 

- Low level, low overhead, full control 

- Manual integration 

• We use this for designs at the CMS Level 1 Trigger

• AXI Protocol 

- Flexible communication and topology 

- Easy integration with other AMD IP, full board designs, 
AMD Software 

• We use this for accelerator designs in hls4ml and conifer

https://docs.amd.com/r/en-US/ug1399-vitis-hls/Interfaces-of-the-HLS-Design
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Making a complete design
• After defining how the HLS will module will communicate, we need to integrate it into a full design 

• There are a few main ways, all useful for different contexts: 

- Using the ‘vitis’ tool (formerly SDAccel) to target boards like Alveo 

- e.g.  v++ -t hw --platform xilinx_u250_gen3x16_xdma_4_1_202210_1 -o hls_kernel.xo   

- One command to create a full design (connecting AXI ports in the HLS kernel to PCIe) and run synthesis & implementation 
with Vivado 

- Using Vivado and ‘IP Integrator’ 

- Connect together blocks with some abstraction and automation 

- Tool recognises common interface types that can be connected 

- Using Vivado and VHDL or Verilog 

- Make your own top-level design and instantiate the HLS RTL inside

34

e.g. from conifer
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Simple HLS Integration Example
• We will use the UART design from Day 3 

- Use your own implementation or the solution 

• Instead of looping the RX data back to the TX output, we 
connect to an HLS module 

- HLS module will keep a rolling sum of the received data 
and send the current sum after every update 

• The design will use: 

- stream interfaces in HLS 

- VHDL integration in Vivado

35

UART 
Receiver

UART 
Transmitter

HLS module

Rx Data

DataTx

Data

Data
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Simple HLS Example
• Accumulator the value received from UART and 

send the accumulator value 

• Static variables 

- After we program the FPGA, the design stays 
running there indefinitely 

- We “call” the HLS function in the FPGA by sending 
a start signal 

- In this design we want to accumulate the value 
every time we send new data 

- We need to persist the value in the device: static 
variables do that 

- In C++: static variables maintain their value 
between function calls 

- In FPGA: the static variable will be represented with 
some register / LUT that is not reset after function 
completion

36

void accumulator(ap_uint<8> in, ap_uint<8>& out) { 
    static ap_uint<8> sum = 0; 
    sum += in; 
    out = sum; 
}

entity accumulator is 
port ( 
    ap_clk : IN STD_LOGIC; 
    ap_rst : IN STD_LOGIC; 
    ap_start : IN STD_LOGIC; 
    ap_done : OUT STD_LOGIC; 
    ap_idle : OUT STD_LOGIC; 
    ap_ready : OUT STD_LOGIC; 
    in_r : IN STD_LOGIC_VECTOR (7 downto 0); 
    out_r : OUT STD_LOGIC_VECTOR (7 downto 0); 
    out_r_ap_vld : OUT STD_LOGIC ); 
end;
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HLS Integration Exercise
• Exercise: 

- Connect the ports of the HLS entity in the top.vhd design 
to the correct signals of the UART RX and TX entities 

- Hints: 

- use the diagram to the right for guidance 

- you won’t need additional logic besides connecting 
signals 

- Synthesize, Implement the design in Vivado and program 
the Arty 

- Test with the Serial console or provided Python driver

37

AMD: Port level protocol with default synthesis

https://docs.amd.com/r/en-US/ug1399-vitis-hls/Port-Level-Protocols-for-Vivado-IP-Flow


Part 2
Loops: analyzing and optimizing
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Introduction
• Loop optimization is the core concept to efficient HLS design 

• In this section we’ll go over the fundamental principles and explore how to control loops in HLS code 

• Basics: 

• Loop bounds: are they constant (at synthesis time) or variable (data dependent)? 

- e.g. the vector addition example had constant loop bounds (dimension 8) but MET exercise had variable loop bounds (N 
particles) 

• Memory: arrays are implemented in “memory” in the FPGA 

- It’s difficult to think about loops without learning about more about memory 

- Arrays can be mapped to any memory type: LUTs & FFs, Block RAM (BRAM), Ultra RAM (URAM), External DDR 

- The different types have different attributes in terms of size — performance tradeoff

39
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Pipeline
• With FPGAs we can take advantage of pipeline processing 

• We need to work to keep the pipeline filled with data 

• Depends on the loops of our algorithm and their inter-dependencies 

• First some terminology: 

- ‘Interval’ or ‘Initiation Interval’ : gap between start of subsequent 
executions of a process 

- How often to trains depart the station? (Once per hour) 

- ‘Latency’ : delay between start of execution of a process, and output of 
results 

- How long does it take to get from A to B? (3 hours 17 minutes) 

• Main advantage of pipelining: latency and interval are not coupled!

40
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Memory
• Here are the main types of memory available on FPGAs 

- Note that DDR is an external component — the others are inside the FPGA

41

Memory Type Max Size (per 
block) Access Ports Latency Typical Use Notes

Register / Logic ~bits unlimited 1 clk Scalars, small 
arrays

Inferred from 
variables

LUTRAM ~bits 1R1W 1 clk Small, distributed 
structures

Uses LUTs → 
consumes logic

BRAM 18K–36K bits 1R1W or 2R 1 clk Medium arrays, 
buffers

Parallel access 
requires 

partitioning

URAM 288K bits 1R1W 2 clk Large buffers, high 
reuse

Only on large 
devices (e.g. 
Ultrascale+)

External DDR GBs AXI burst 100+ clk Large datasets, 
software-like

Sequential access 
only; not suitable 

for pipelining
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LUT RAM vs Block RAM
• LUT RAM (a.k.a. Distributed RAM) 

- Built from LUTs in the logic fabric 

• Small and fast, ideal for: 

- Small lookup tables, FIFOs, temporary storage 

• Inferred when arrays are very small (e.g. <32 elements) 

- i.e. don’t have to explicitly write code for it 

• Advantage: low latency and logic proximity 

• Tradeoff: consumes LUT resources, which may be 
needed for logic

42

• Block RAM (BRAM) — FPGA's Dedicated Memory Blocks 

- Fixed capacity per block (typically 18K or 36K bits) 

• Multiple configurations: e.g. 512×36, 1K×18, 2K×9 

- Configurable address & data width 

- Total size is fixed, but width/height can vary 

• Wider data bus = fewer addressable locations 

• Typically 1 or 2 access ports 

- 1R1W (1 read, 1 write) or 2R (2 reads) 

• Shared between loop iterations → can limit pipelining 

• Used automatically by HLS for medium arrays 

• View usage and mapping in synthesis reports (.rpt)A = h x w

A = 
h x w

A 
= 
h 
x 
w
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Memory
• Memory capacity is an important 

consideration when choosing a 
device 

• e.g. Xilinx 7-series Product 
Select Guide 

• FPGAs enable acceleration by 
combining parallelism with an 
application-specific memory 
hierarchy 

- explicitly controlling where and 
how data is stored and 
accessed 

- unlike CPUs with general-
purpose caches

43

https://docs.amd.com/v/u/en-US/7-series-product-selection-guide
https://docs.amd.com/v/u/en-US/7-series-product-selection-guide
https://docs.amd.com/v/u/en-US/7-series-product-selection-guide
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Loop Analysis
• With FPGAs we can take advantage of pipeline processing 

• We need to work to keep the pipeline filled with data 

• Depends on the loops of our algorithm and their inter-dependencies 

• First some terminology: 

- ‘Interval’ or ‘Initiation Interval’ : gap between start of subsequent 
executions of a process 

- How often to trains depart the station? (Once per hour) 

- ‘Latency’ : delay between start of execution of a process, and output of 
results 

- How long does it take to get from A to B? (3 hours 17 minutes) 

• Main advantage of pipelining: latency and interval are not coupled!

44
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Loop Analysis
• Loops can have dependencies that impacts scheduling, unrolling, and interval 

• Consider this loop executed sequentially 

- The loop has Latency 3 cycles, Interval 3 cycles 

• This loop has no iteration dependence (iteration i does not depend on any other iteration) 

- It can be pipelined: loop has Latency 3 cycles, Interval 1 cycle 

• If all of a[i] can be read simultaneously (e.g. it’s in FPGA registers not BRAMs), the loop can be unrolled

45

for(i = 0; i < 3; i++) 
    a[i] = a[i] + 1;

Read Add Write Read Add Write Read Add Write

for(i = 0; i < 3; i++) 
    a[i] = a[i] + 1;

Read Add Write

Read Add Write

Read Add Write

for(i = 0; i < 3; i++) 
    a[i] = a[i] + 1;

Read Add Write

Read Add Write

Read Add Write

time
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Loop Analysis
• Some loops have dependencies (loop-carried dependence) 

• We can’t pipeline or unroll this loop since the read of iteration i depends on the write of iteration i-1 

• For best performance with parallel architectures, we need to understand and optimise our loops 

- Defines how we can distribute loop iterations across different processing units 

- Merge loops where possible 

- Break dependencies by reordering loops

46

for(i = n; i > 0; i--) 
    a[i] = a[i-1] + x[i];

Read Add Write Read Add Write Read Add Write
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Loops Optimizing
• The way we control loops in HLS is partly through how we write the C++ (more on this later) and partly through pragmas 

- Directives that the synthesis tool uses to map the code to RTL

47

for(i = 0; i < 3; i++) 
    a[i] = a[i] + 1;

Read Add Write Read Add Write Read Add Write

for(i = 0; i < 3; i++) 
#pragma hls pipeline 
    a[i] = a[i] + 1;

Read Add Write

Read Add Write

Read Add Write

for(i = 0; i < 3; i++) 
#pragma hls unroll 
    a[i] = a[i] + 1;

Read Add Write

Read Add Write

Read Add Write
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Loop Optimizing
• The way we control loops in HLS is partly through how we write the C++ (more on this later) and partly through pragmas 

- Directives that the synthesis tool uses to map the code to RTL 

- Recall our vector sum example from the arithmetic section 

- The provided implementation was scheduled like this:

48

void vec_sum(const data_t in1[8], 
             const data_t in2[8], 
             data_t out[8]) { 
   for (int i = 0; i < 8; ++i) { 
       out[i] = in1[i] + in2[i]; 
    } 
}
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Loop Optimizing
• The way we control loops in HLS is partly through how we write the C++ (more on this later) and partly through pragmas 

- Directives that the synthesis tool uses to map the code to RTL 

- Recall our vector sum example from the arithmetic section 

- Exercise: now add these pragmas to the code, verify the equivalence with c simulation, run the c synthesis and view schedule

49

void vec_sum(const data_t in1[8], 
             const data_t in2[8], 
             data_t out[8]) { 
    #pragma HLS array_partition variable=in1 
    #pragma HLS array_partition variable=in2 
    #pragma HLS array_partition variable=out 
    #pragma HLS pipeline 
    for (int i = 0; i < 8; ++i) { 
        #pragma HLS unroll 
        out[i] = in1[i] + in2[i]; 
    } 
}

???
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Loop Optimizing
• The way we control loops in HLS is partly through how we write the C++ (more on this later) and partly through pragmas 

- Directives that the synthesis tool uses to map the code to RTL 

- Recall our vector sum example from the arithmetic section 

- The order and parallelization of operations has completely changed

50

void vec_sum(const data_t in1[8], 
             const data_t in2[8], 
             data_t out[8]) { 
    #pragma HLS array_partition variable=in1 
    #pragma HLS array_partition variable=in2 
    #pragma HLS array_partition variable=out 
    #pragma HLS pipeline 
    for (int i = 0; i < 8; ++i) { 
        #pragma HLS unroll 
        out[i] = in1[i] + in2[i]; 
    } 
}

Skip
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Pragma details
• What did each pragma do?

51

void vec_sum(const data_t in1[8], 
             const data_t in2[8], 
             data_t out[8]) { 
    #pragma HLS array_partition variable=in1 
    #pragma HLS array_partition variable=in2 
    #pragma HLS array_partition variable=out 
    #pragma HLS pipeline 
    for (int i = 0; i < 8; ++i) { 
        #pragma HLS unroll 
        out[i] = in1[i] + in2[i]; 
    } 
}

Partition: make all of the array elements

 simultaneously readable

Unroll: execute each loop iteration in parallel

Pipeline: enable concurrent operation execution
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Pragmas / loops
• Exercise: Try each of the pragmas in isolation, and log some key metrics: 

- Look at the schedule viewer for each one and reason what constraints are impacting the behaviour

52

void vec_sum(const data_t in1[8], 
             const data_t in2[8], 
             data_t out[8]) { 
    for (int i = 0; i < 8; ++i) { 
        #pragma HLS unroll 
        out[i] = in1[i] + in2[i]; 
    } 
}

LUT Latency Interval

No pragmas

Unroll

Array 
Partition

Pipeline

All pragmas



Presentation - Sioni Summers24/1/2020

Partial unrolling
• We can also partially unroll a loop and partially partition an array 

- Useful when fully unrolling a loop will consume more resources than the chip has available 

- Example: partially unrolled with “factor = 2”

53

Read Add Write

Read Add Write

Read Add Write

Read Add Write

Read Add Write

Read Add Write

Read Add Write

Read Add Write

time

for(i = 0; i < 3; i++) 
    a[i] = a[i] + 1;

Read Add Write Read Add Write Read Add Write

for(i = 0; i < 8; i++) 
#pragma hls unroll factor=2 
    a[i] = a[i] + 1;
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Loop bounds
• Some of the loop optimizations are only valid when the loop bounds are known at C Synthesis time 

- Consider: unrolled loop create N copies of the loop body in hardware → not possible if N is a variable 

- Recall our MET example top function: T_met compute_met(unsigned short n_particles, T_pt* pt, T_pt* 
phi) 

- The HLS Synthesis assumes the maximum value of  unsigned short  iterations for the loop over n_particles 

• Sometimes this is unavoidable, but sometimes small changes can enable access to loop optimizations 

- Tell HLS the real limits:  #pragma HLS loop_tripcount min=<int> max=<int> avg=<int>  

- Change a variable iteration loop to a fixed size one 

- Can then apply any unrolling, pipelining 

- May need to handle edge cases e.g. with conditional execution if out of loop bounds

54

WARNING: [HLS 200-936] Cannot unroll loop 'LOOP_X' (loop_var.cpp:22) in function 'loop_var': 
cannot completely unroll a loop with a variable trip count.
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Merging loops
• Code that seems well organized and natural in regular C++ for CPU may be suboptimal for HLS: merged loops 

- Example from HLS documentation

55

void top(a[4], b[4], c[4], d[4]){ 

  Add: 
  for(i=3; i>=0; i++){ 
    if(d[i]) 
      a[i] = b[i] + c[i]; 
  } 

  Sub: 
  for(i=3; i>=0; i++){ 
    if(!d[i]) 
      a[i] = b[i] - c[i]; 
  } 
     
}

• Left: HLS will execute the full Add 
loop then the full Sub loop 

- Plus a ‘control’ cycle to enter and 
exit each loop 

- Latency will be 11 cycles 

• Right: HLS will execute the merged 
loop 

- Latency will be 6 cycles

void top(a[4], b[4], c[4], d[4]){ 

  AddOrSub: 
  for(i=3; i>=0; i++){ 
    if(d[i]) 
      a[i] = b[i] + c[I]; 
    else 
      a[i] = b[i] - c[i]; 
  } 

     
}

https://docs.amd.com/r/en-US/ug1399-vitis-hls/Merging-Loops
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Loops Exercise: faster MET
• Exercise: improve the performance of the MET computation from the first session 

- Use all of the loop analysis and optimization strategies from this section 

- Reorganize the code, use pragmas 

• Challenge: achieve the lowest latency for the MET computation 

- Constraints: the resource usage must be less than 100% of the Arty 100 after C Synthesis individually for all resource types 

- The MET numerical result must satisfy the same limits: 10 GeV absolute and 2% relative maximum difference vs the floating point

56

DSP LUT FF BRAM Latency Interval Worst 
Error

Mean 
Error

Original ? ? ? ? ? ? ? ?

Optimized ? ? ? ? ? ? ? ?


