

Presentation - Sioni Summers24/1/2020

Introduction
• High Level Synthesis is a new paradigm in programming FPGAs

- Write algorithms → synthesis tool determines the hardware

- Input using C++ — higher level abstraction than HDLs

- Productivity 📈 — create working designs faster

- Sophistication 📈 — create advanced designs with complicated algorithms

• But working with HLS still requires expertise, and a foundation in HDL is a great starting point

• Main topics of this part:

- Number representations and arithmetic

- Loop Analysis and Optimization

2

Fast ML at the Edge - Sioni Summers8 March 2024

About me
• Staff at CERN working on Level 1 Trigger Upgrade for CMS experiment

- Mostly designing and implementing detector reconstruction algorithms for
Level 1 Trigger

- Track reconstruction, vertexing, particle flow, jets, jet tagging, ML

- Task leader in Next Generation Triggers project

• PhD High Energy Physics Imperial College London

- Thesis: “Applications of FPGAs to triggering in particle physics”

- Designing physics algorithms with high level languages for FPGAs

• Also deploying Machine Learning into FPGAs for low latency

- hls4ml coordinator 2020-2022, creator and maintainer of conifer

• Leading Edge SpAIce project at CERN: ML in FPGA for satellites

3

sioni@cern.ch

sioni.web.cern.ch

@thesps

@ssummers

mailto:sioni@cern.ch
http://sioni.web.cern.ch
http://github.com/thesps
http://gitlab.cern.ch/ssummers
mailto:sioni@cern.ch
mailto:sioni@cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch
http://sioni.web.cern.ch

Presentation - Sioni Summers24/1/2020

One FPGA Case Study
• For the CMS Phase 2 Upgrade we are designing jet reconstruction and tagging

- Find cones of particles from the decay of a parent particle, and use ML to predict
the parent particle type, make CMS will collect data for important event types (e.g.
HH→bbbb)

• Less than 1 μs from particles input to tagged jets output

• We used both HLS and VHDL, and hls4ml for the Neural Network

4

Particle receiving
Jet finding

Jet tagging (NN)

Part 1
Numerics: Fixed Point Arithmetic

Presentation - Sioni Summers24/1/2020

• On your CPU (and GPU) you are probably familiar with integer and floating point numerical formats

• Integer represents integer values in a fixed number of bits (e.g. 32, 16, 8)

• Floating point represents values with a mantissa and exponent : m · 2e

- It’s like scientific notation with binary

• Simplified examples, representing the number 113, ignoring sign (positive values only)

6

27 26 25 24 23 22 21 20

0 1 1 1 0 0 0 1

102 101 100

1 1 3

Base 10 integer
11310

Base 2 integer
0b01110001

100 10-1 10-2

1 1 3·
· 10^

100 10-1

2 0·

Base 10 floating point
(3 digit mantissa,
2 digit exponent)

1.13 ⨉ 102.0

23 22 21 20

1 1 1 0
· 2^

23 22 21 20

1 0 0 0

Base 2 floating point
(4 bit mantissa,
4 bit exponent)
14 ⨉ 28 = 112

(Approximate)

Presentation - Sioni Summers24/1/2020

Operations
• On your CPU (and GPU) you are probably familiar with integer and floating point numerical formats

• Integer represents integer values in a fixed number of bits (e.g. 32, 16, 8)

• Floating point represents values with a mantissa and exponent : m · 2e

• Demo:

- Suppose we have decimal integers x = 15 and y = 27

- Compute z = x + y using “long hand”

7

X 1 5

Y 2 7

Z 4 2
1 Carry

Presentation - Sioni Summers24/1/2020

Integers
• On your CPU (and GPU) you are probably familiar with integer and floating point numerical formats

• Integer represents integer values in a fixed number of bits (e.g. 32, 16, 8)

• Floating point represents values with a mantissa and exponent : m · 2e

• Exercise:

- Suppose we have 4-bit unsigned (positive) integers x = 0b0011 and y = 0b0101

- Compute z = x + y — use the “long hand” method and remember to “carry the 1”

8

Note: 0b prefix

 means binary number

Presentation - Sioni Summers24/1/2020

Overflow, saturation, truncation
• When working with decimals we usually perform “bit growth” intuitively e.g. 9 + 3 = 12 — one more digit in result

• With computer arithmetic the bit sizes are usually fixed e.g. 4, 8, 16, 32 bits

• When results of operations exceed the constraints of the precision, we can get overflow

- Exercise: compute 1210 + 510 with 4 bit operands and 4 bit result ie ignore anything beyond 4 bits

9

Presentation - Sioni Summers24/1/2020

Bit Growth
• When results of operations exceed the constraints of the precision, we can get overflow

• With computer arithmetic the bit sizes are usually fixed e.g. 4, 8, 16, 32 bits

• We can increase the bit precision of the result of an operation in an FPGA to compensate for overflow

- Provided the result is stored in a different memory/register/logic than the operands of smaller width

• Exercise: assuming unsigned integers, what would be the required bit-width for the result of:

- a 4-bit integer summed with a 4-bit integer?

- a 4-bit integer summed with a 3-bit integer?

- a N-bit integer summed with an M-bit integer?

10

- a 4-bit integer multiplied with a 4-bit integer?

- a 4-bit integer multiplied with a 3-bit integer?

- a N-bit integer multiplied with an M-bit integer?

Hint: consider the maximum values of each operand

Presentation - Sioni Summers24/1/2020

Two’s complement
• So far we used unsigned integers, but that’s limiting

• How do we represent negative values with fixed size binary numbers?

• Most common method: two’s complement

• To work out the two’s complement representation of a negative number (e.g. -610 in 4 bits)

- Start with the binary representation of the absolute value: 610 = 0b0110

- Invert all of the bits: 0b0110 → 0b1001

- Add 1 to the value, ignoring overflow: 0b1001 → 0b1010

• Observations:

- The most significant bit always denotes the sign — leading 0 → positive or zero, leading 1 → negative (but not sign & value)

- We can do arithmetic with numbers in this representation

- Exercise: take two 4 bit two’s complement numbers x = +310 , y = -110 and compute x + y in binary

11

Presentation - Sioni Summers24/1/2020

Fixed Point
• On CPU / GPU we need to work with number types that are native to the hardware

- We can emulate other number types but it arithmetic won’t run with high performance

• On FPGA we are designing the hardware itself, so we can use any number representation that we like

• We’ll see this for ourselves soon, but integer operations are much less resource and latency intensive than floating point

• But what if we want to represent fractions? Enter fixed point

• Fixed point combines some of the convenience of floating point with the low hardware cost of integers

• Recall: floating point is m · 2e → in fixed point the value of exponent is fixed so it doesn’t need to be explicitly represented

• Example: 8 bit unsigned fixed point with 4 integer bits, 4 fractional bits, representing 9.312510

12

23 22 21 20 2-1 2-2 2-3 2-4

1 0 0 1 0 1 0 1

FractionInteger

·

·

Binary point / radix point

Presentation - Sioni Summers24/1/2020

Fixed Point
• Exercise: what are the values in base 10 of these 8 bit unsigned fixed-point numbers?

- What are the maximum and minimum values of the three fixed-point number formats?

13

23 22 21 20 2-1 2-2 2-3 2-4

0 1 1 1 0 0 0 1

25 24 23 22 21 20 2-1 2-2

0 1 1 1 0 0 0 1

2-4 2-5 2-6 2-7 2-8 2-9 2-11 2-11

0 1 1 1 0 0 0 1

FractionInteger

FractionInteger

Fraction

23 22 21 20 2-1 2-2 2-3 2-4

1 0 0 1 0 1 0 1

FractionInteger

= 9 .312510

a.

b.

c.

Example

Presentation - Sioni Summers24/1/2020

Fixed Point
• Exercise: can you generalise the rules for bit-growth of integers to bit-growth of fixed-point?

- 1) For addition/subtraction and 2) multiplication. Hint: consider maximum and minimum values

- Operand 0: F0 fractional bits, I0 integer bits (F0 + I0 width); Operand 1: F1 fractional bits, I1 integer bits (F1 + I1 width)

- Recall the integer bit-growth rules, with operand widths ’N’ and ‘M’

- for addition & subtraction the result bitwidth should be 1 + max(N,M)

- for multiplication the result bitwidth should be N + M

14

Presentation - Sioni Summers24/1/2020

Introduction to High Level Synthesis
• Now we’ll get some hands on experience with numerics in High Level Synthesis

• Reminder: why do we use it?

- Write FPGA designs in C++: lower barrier to entry than HDL

- Rapid design space exploration (explore resource / latency tradeoffs with ease); realise complex algorithms

•🛠 Typical HLS workflow

- ✏ Write C/C++ kernel: my_function.cpp

- 🧪 Create testbench: my_function_tb.cpp to simulate inputs/outputs

- ⚙ Run HLS flow using Vitis HLS:

- C Simulation: functional correctness check using the testbench — HLS C++ code is executed on the CPU

- C Synthesis: HLS C++ code is synthesized into RTL + resource/latency estimates

- Co-Simulation: validate generated RTL against testbench — clock cycle accurate

• Optimize latency, throughput, and resource usage (LUTs, FFs, DSPs, BRAM)

- Explore trade-offs using loop unrolling, pipelining, precision tuning

15

Presentation - Sioni Summers24/1/2020

Introduction to High Level Synthesis
•📁 Structure of a Typical HLS Project

- 🔧 my_function.cpp — algorithm to be synthesized to FPGA

- 📊 my_function_tb.cpp — C++ testbench that drives inputs and checks outputs

- 📂 hls_prj/ — directory with reports, logs, RTL, etc. produced from the HLS tool

- 🧾 script.tcl — automates synthesis/verification in batch mode

16

open_project my_proj
add_files my_function.cpp
add_files -tb my_function_tb.cpp
open_solution "solution1"
set_top my_function
create_clock -period 5
csim_design
csynth_design
cosim_design

Presentation - Sioni Summers24/1/2020

Introduction to High Level Synthesis
• 🔧 my_function.cpp — algorithm to be synthesized to FPGA
→ This is where you describe your logic in standard C++ (with some HLS-specific types)

• 🎯 Define a “top-level” function
→ This is the function that Vitis HLS treats as the hardware module interface
→ Must use scalar or array arguments (no dynamic memory, no STL containers)

• 🧮 Use ap_fixed datatypes for fixed-point arithmetic
→ Provided by the ap_fixed.h header
→ Enables precise control of bit widths for resource and accuracy trade-offs

• 🔢 ap_fixed<16, 5>
→ 16-bit signed number: 5 integer bits, 11 fractional bits

• 🔢 ap_fixed<8, 3, AP_RND, AP_SAT>
→ 8-bit signed, 3 integer bits, 5 fractional, AP_RND = round to nearest; AP_SAT = saturate on overflow

• 🏗 Use #pragma HLS directives to control synthesis behavior
→ Guide unrolling, pipelining, array partitioning, and interface behavior
→ These affect latency, throughput, and resource usage

• 📅 Tomorrow: we'll explore how to use pragmas to tune designs for performance and resource efficiency

17

Presentation - Sioni Summers24/1/2020

Introduction to High Level Synthesis
• Example HLS top-level function, sum two dimension-8 vectors of 16 bit, 8 integer bit values

• When you have all of the ingredients, launch the workflow from the command line with:

- vitis_hls -f csim.tcl ; vitis_hls -f csynth.tcl ; vitis_hls -f cosim.tcl

- This will create a project, run simulation, synthesis, and/or co-simulation as defined in the script

18

#include “ap_fixed.h”

typedef ap_fixed<16,8> data_t;

void vec_sum(const data_t in1[8], const data_t in2[8], data_t out[8]) {
 VectorLoop:

for (int i = 0; i < 8; ++i) {
 out[i] = in1[i] + in2[i];
 }
}

Presentation - Sioni Summers24/1/2020

Analyzing Designs
• After we run C Synthesis and Co Simulation, we generate many reports and also an HLS project

- All of them contain very useful information for analyzing the design

- In particular:

- 📄 <project name>/<solution name>/syn/report/csynth.rpt

- 📄 <project name>/<solution name>/sim/report/<top name>_cosim.rpt

- These reports can also be viewed in the GUI (next slides)

19

+ Performance & Resource Estimates:

 PS: '+' for module; 'o' for loop; '*' for dataflow
 +---------------+------+------+---------+---------+----------+---------+------+----------+------+----+----------+----------+-----+
 | Modules | Issue| | Latency | Latency | Iteration| | Trip | | | | | | |
 | & Loops | Type | Slack| (cycles)| (ns) | Latency | Interval| Count| Pipelined| BRAM | DSP| FF | LUT | URAM|
 +---------------+------+------+---------+---------+----------+---------+------+----------+------+----+----------+----------+-----+
 |+ vec_sum | -| 0.87| XX| XXX.XXX| XX| XX| XX| y/n| XX| XX| XX| XX| XX|
 | o VectorLoop | -| 7.30| X| XXX.XXX| XX| XX| XX| y/n| XX| XX| XX| XX| XX|
 +---------------+------+------+---------+---------+----------+---------+------+----------+------+----+----------+----------+-----+

Presentation - Sioni Summers24/1/2020

HLS GUI
• We will also use the HLS GUI for some analysis, to open: run vitis_hls -classic (classic option for ≥ 2023.2)

• You may use whichever file editor you like, but the HLS GUI does provide some useful auto-completion

20

Presentation - Sioni Summers24/1/2020

HLS GUI
• The analysis after running synthesis is especially useful e.g. schedule viewer

- did the design map to HW as expected? Where are the bottlenecks in the design impacting performance?

21

Presentation - Sioni Summers24/1/2020

Exercise 1
• We’ll work with the project that sums together 8-dimension

vectors

•📁 go to directory arithmetic/

• Find all of the necessary files for a first HLS project:

- 🔧 vec_sum.h & vec_sum.cpp — algorithm to be synthesized to
FPGA

- 📊 testbench.cpp — C++ testbench that drives inputs and
checks outputs

- 🧾 csim.tcl, csynth.tcl, cosim.tcl— automates synthesis/
verification in batch mode

• Exercise: run the scripts, and browse the reports and Vitis
HLS GUI

- What is the latency and resource usage of this design?

22

void vec_sum(const data_t in1[8],
 const data_t in2[8],
 data_t out[8]) {
 for (int i = 0; i < 8; ++i) {
 out[i] = in1[i] + in2[i];
 }
}

DSP LUT FF BRAM Latency Worst
Error

Mean
Error

? ? ? ? ? ? ?

Presentation - Sioni Summers24/1/2020

Exercise 2 & 3
• vec_sum.h has a line:

- typedef float data_t; that defines that we used floating point for all of the variables

• Exercise: adapt the function to use fixed point instead

- Find the necessary number of integer bits to avoid overflow

- Find the smallest total bit width that keeps the worst error smaller than 0.1

- Track your experiments in a results table, and plot LUT usage vs error

- Note running the script overwrites the existing project, so log your results after each run

23

DSP LUT FF BRAM Latency Worst
Error

Mean
Error

Width 1 ? ? ? ? ? ? ?

Width 2 ? ? ? ? ? ? ?

Width 3 ? ? ? ? ? ? ?

… … … … … … … …

LUT

M
ea

n
Er

ro
r

???

Presentation - Sioni Summers24/1/2020

Fixed Point

• It can be useful to use some domain knowledge about the realistic values to constrain the types

- i.e. grow then shrink

• Example: d = v · t distance: meters; time: seconds; velocity: meters per second

- For a car, suppose v ∈ [0, 50] m/s (50 m/s ≃ 180 km/h) ; t ∈ [0, 20] s sampling device

- Then v → ap_ufixed<10,6> and t → ap_ufixed<10,6> — values up to 63, steps of 1/16 ~ 0.06

- Bitgrowth multiplication rule yields ap_ufixed<20, 12> — values up to 4095 m, steps of 1/256 ~ 0.004

- But given our constraints the real maximum value could be 1000 m, and 0.004 m is too precise

- Could clip to ap_fixed<14, 10, AP_RND, AP_SAT> for our real range and a reasonable precision, with rounding and
saturation for safety — values up to 1023 m, steps of 1/16 ~ 0.06 m

24

• The rules for bit-growth are important for understanding
the types you give to variables in HLS

- But it’s not the only factor!

• If you have a long sequence of arithmetic operations the
bit-growth can result in very wide data types

- Consider that one DSP has one 25 and one 18 bit input

Presentation - Sioni Summers24/1/2020

Long Exercise 1: Missing Transverse Energy
• Now that you’ve learned the essentials of fixed point arithmetic, it’s time

to put it to practice with an extended exercise

• One important quantity that we compute in FPGAs in the CMS Level 1
Trigger system is Missing Transverse Energy (MET)

- Due to momentum conservation, the vector sum over particle momenta
must be zero*

- If we find a significantly non-zero MET it’s of interest

- It could be mismeasurement, or a known particle that doesn’t interact
with the detector e.g. neutrino

- Or it could be a new type of particle that doesn’t interact with the
detector

- * it’s only true in the transverse plane since the colliding particles are
constituents of the proton, potentially carrying different momenta in the
longitudinal direction

25

Presentation - Sioni Summers24/1/2020

Exercise
• You need to compute the MET (vector sum) from all of the particles in each

event

- An event refers to all of the particles produced from one collision at the LHC

• A particle is represented as an object with three properties:

- Transverse momentum — pT

- Angle at vertex — ɸ

- ‘Angle’ in longitudinal plane — η

• MET is the magnitude of the vector sum of particles

• You are given:

- a file with particles from 1000 simulated events of a process with real MET*

- a reference implementation in Python

26

pT,i

pT,i

pT,i

pT,i

Y

X

ɸ

Presentation - Sioni Summers24/1/2020

Maths functions
• There is a library of math functions for HLS available as #include “hls_math.h”

- This include implementations of the trigonometric functions you’ll need e.g. hls::cos , hls::sin , hls::sqrt

- Use them for your first attempt

- Make a plot to validate the HLS trigonometry on your fixed point against the C++ math trigonometry on floating point

• In some cases we can be more efficient by preparing a Look Up Table that we can read with an address

- Fill the table with the ‘ideal’ floating point function during compile / synthesis time

- Read the table using the runtime data in the FPGA

- If you have time, see if you can reduce the latency and resource usage of the trigonometry functions by replacing the HLS
functions with a precomputed table

- Validate your tables with a plot to compare

27

Presentation - Sioni Summers24/1/2020

Evaluating your results
• In this exercise we will look at three metrics:

1. Accuracy of the MET calculation against the
Python reference

- Aiming for 10 GeV absolute and 2% relative
maximum difference

- Use plots and other tools in the provided Python
notebook to judge

2. Resources of MET calculation HLS function

- Use synthesis reports

3. Latency of MET calculation HLS function

- Use synthesis reports and cosimulation

28

+--------+--------+-----------+-----------+-----+
| BRAM | DSP | FF | LUT | URAM|
+--------+--------+-----------+-----------+-----+
| 4 (1%)| 6 (2%)| 2139 (1%)| 4364 (6%)| -|
-	-	1834 (1%)	3614 (5%)	-
4 (1%)	-	90 (~0%)	311 (~0%)	-
-	-	-	-	-
+--------+--------+-----------+-----------+-----+

1

+----------+----------+---+---+----------------------+
| | | Latency(Clock Cycles) | Interval(Clock Cycles) | Total Execution Time |
+ RTL + Status +---+---+ (Clock Cycles) +
| | | min | avg | max | min | avg | max | |
+----------+----------+---+---+----------------------+
| VHDL| NA| NA| NA| NA| NA| NA| NA| NA|
| Verilog| Pass| 428| 1312| 2756| 429| 1313| 2757| 1313303|
+----------+----------+---+---+----------------------+

2

3

Presentation - Sioni Summers24/1/2020

Improving your results
• Accuracy of the MET calculation

- Explore the dataset and reference calculation in Python to choose
appropriate precision

- Remember that every operation and variable can have a different precision!

- The HLS testbench from C Simulation writes a CSV file that the Python
script can read to compare

- Use the plots and “np.testing.assert_allclose” cell to evaluate and improve

- When you change something, save the results to a different filename so
that you can compare and improve

• Resources and Latency

- Use the Schedule viewer and analysis view in Vitis HLS GUI

- Giving labels to for-loops in HLS C++ can help identify them in reports

- Defining functions for computation blocks can help identify them in reports

29

Part 1.1
Interfaces

Presentation - Sioni Summers24/1/2020

Introduction
• In the first HLS exercises, we used:

- C Simulation to interpret the numerical results

- C Synthesis to evaluate the resource usage and latency

• But we neglected something important: how the HLS module will communicate with the outside world

• This section will give a brief overview and an example on the Arty 100T

- Just to give you a flavour of the options

31

Presentation - Sioni Summers24/1/2020

The basics
• When we run the C Synthesis we produce some RTL output: VHDL or Verilog, can be packaged as an “IP”

- This RTL has some specific interface and an expected handshaking mechanism

- Two things define the RTL interface:

- The function signature of the C++

- Any interface directives inside the function

32

entity vec_sum is
port (
 ap_clk : IN STD_LOGIC;
 ap_rst : IN STD_LOGIC;
 ap_start : IN STD_LOGIC;
 ap_done : OUT STD_LOGIC;
 ap_idle : OUT STD_LOGIC;
 ap_ready : OUT STD_LOGIC;
 in1_address0 : OUT STD_LOGIC_VECTOR (2 downto 0);
 in1_ce0 : OUT STD_LOGIC;
 in1_q0 : IN STD_LOGIC_VECTOR (10 downto 0);
 in2_address0 : OUT STD_LOGIC_VECTOR (2 downto 0);
 in2_ce0 : OUT STD_LOGIC;
 in2_q0 : IN STD_LOGIC_VECTOR (10 downto 0);
 out_r_address0 : OUT STD_LOGIC_VECTOR (2 downto 0);
 out_r_ce0 : OUT STD_LOGIC;
 out_r_we0 : OUT STD_LOGIC;
 out_r_d0 : OUT STD_LOGIC_VECTOR (10 downto 0));
end;

void vec_sum(const data_t in1[8], const data_t in2[8],
data_t out[8]) {
 VectorLoop:
 for (int i = 0; i < 8; ++i) {
 out[i] = in1[i] + in2[i];
 }
}

Presentation - Sioni Summers24/1/2020

Interface types
• HLS abstracts huge flexibility about the interface — full guide from Xilinx “Interfaces of the HLS Design”

- You can make very big changes about the interface type with small code changes

- Even for an array, the access pattern of the array in the code will impact the ports

• The main types of interface:

- Bare registers, memory ports, streams

- AXI Protocol (Advanced eXtensible Interface) : AXI4-Lite, AXI4-Stream, AXI4-Master

33

• Bare registers, memory ports, streams:

- Low level, low overhead, full control

- Manual integration

• We use this for designs at the CMS Level 1 Trigger

• AXI Protocol

- Flexible communication and topology

- Easy integration with other AMD IP, full board designs,
AMD Software

• We use this for accelerator designs in hls4ml and conifer

https://docs.amd.com/r/en-US/ug1399-vitis-hls/Interfaces-of-the-HLS-Design

Presentation - Sioni Summers24/1/2020

Making a complete design
• After defining how the HLS will module will communicate, we need to integrate it into a full design

• There are a few main ways, all useful for different contexts:

- Using the ‘vitis’ tool (formerly SDAccel) to target boards like Alveo

- e.g. v++ -t hw --platform xilinx_u250_gen3x16_xdma_4_1_202210_1 -o hls_kernel.xo

- One command to create a full design (connecting AXI ports in the HLS kernel to PCIe) and run synthesis & implementation
with Vivado

- Using Vivado and ‘IP Integrator’

- Connect together blocks with some abstraction and automation

- Tool recognises common interface types that can be connected

- Using Vivado and VHDL or Verilog

- Make your own top-level design and instantiate the HLS RTL inside

34

e.g. from conifer

Presentation - Sioni Summers24/1/2020

Simple HLS Integration Example
• We will use the UART design from Day 3

- Use your own implementation or the solution

• Instead of looping the RX data back to the TX output, we
connect to an HLS module

- HLS module will keep a rolling sum of the received data
and send the current sum after every update

• The design will use:

- stream interfaces in HLS

- VHDL integration in Vivado

35

UART
Receiver

UART
Transmitter

HLS module

Rx Data

DataTx

Data

Data

Presentation - Sioni Summers24/1/2020

Simple HLS Example
• Accumulator the value received from UART and

send the accumulator value

• Static variables

- After we program the FPGA, the design stays
running there indefinitely

- We “call” the HLS function in the FPGA by sending
a start signal

- In this design we want to accumulate the value
every time we send new data

- We need to persist the value in the device: static
variables do that

- In C++: static variables maintain their value
between function calls

- In FPGA: the static variable will be represented with
some register / LUT that is not reset after function
completion

36

void accumulator(ap_uint<8> in, ap_uint<8>& out) {
 static ap_uint<8> sum = 0;
 sum += in;
 out = sum;
}

entity accumulator is
port (
 ap_clk : IN STD_LOGIC;
 ap_rst : IN STD_LOGIC;
 ap_start : IN STD_LOGIC;
 ap_done : OUT STD_LOGIC;
 ap_idle : OUT STD_LOGIC;
 ap_ready : OUT STD_LOGIC;
 in_r : IN STD_LOGIC_VECTOR (7 downto 0);
 out_r : OUT STD_LOGIC_VECTOR (7 downto 0);
 out_r_ap_vld : OUT STD_LOGIC);
end;

Presentation - Sioni Summers24/1/2020

HLS Integration Exercise
• Exercise:

- Connect the ports of the HLS entity in the top.vhd design
to the correct signals of the UART RX and TX entities

- Hints:

- use the diagram to the right for guidance

- you won’t need additional logic besides connecting
signals

- Synthesize, Implement the design in Vivado and program
the Arty

- Test with the Serial console or provided Python driver

37

AMD: Port level protocol with default synthesis

https://docs.amd.com/r/en-US/ug1399-vitis-hls/Port-Level-Protocols-for-Vivado-IP-Flow

Part 2
Loops: analyzing and optimizing

Presentation - Sioni Summers24/1/2020

Introduction
• Loop optimization is the core concept to efficient HLS design

• In this section we’ll go over the fundamental principles and explore how to control loops in HLS code

• Basics:

• Loop bounds: are they constant (at synthesis time) or variable (data dependent)?

- e.g. the vector addition example had constant loop bounds (dimension 8) but MET exercise had variable loop bounds (N
particles)

• Memory: arrays are implemented in “memory” in the FPGA

- It’s difficult to think about loops without learning about more about memory

- Arrays can be mapped to any memory type: LUTs & FFs, Block RAM (BRAM), Ultra RAM (URAM), External DDR

- The different types have different attributes in terms of size — performance tradeoff

39

Presentation - Sioni Summers24/1/2020

Pipeline
• With FPGAs we can take advantage of pipeline processing

• We need to work to keep the pipeline filled with data

• Depends on the loops of our algorithm and their inter-dependencies

• First some terminology:

- ‘Interval’ or ‘Initiation Interval’ : gap between start of subsequent
executions of a process

- How often to trains depart the station? (Once per hour)

- ‘Latency’ : delay between start of execution of a process, and output of
results

- How long does it take to get from A to B? (3 hours 17 minutes)

• Main advantage of pipelining: latency and interval are not coupled!

40

Zürich HB Milano Centrale

Interval

Latency

In
te

rv
al

Latency

Presentation - Sioni Summers24/1/2020

Memory
• Here are the main types of memory available on FPGAs

- Note that DDR is an external component — the others are inside the FPGA

41

Memory Type Max Size (per
block) Access Ports Latency Typical Use Notes

Register / Logic ~bits unlimited 1 clk Scalars, small
arrays

Inferred from
variables

LUTRAM ~bits 1R1W 1 clk Small, distributed
structures

Uses LUTs →
consumes logic

BRAM 18K–36K bits 1R1W or 2R 1 clk Medium arrays,
buffers

Parallel access
requires

partitioning

URAM 288K bits 1R1W 2 clk Large buffers, high
reuse

Only on large
devices (e.g.
Ultrascale+)

External DDR GBs AXI burst 100+ clk Large datasets,
software-like

Sequential access
only; not suitable

for pipelining

Presentation - Sioni Summers24/1/2020

LUT RAM vs Block RAM
• LUT RAM (a.k.a. Distributed RAM)

- Built from LUTs in the logic fabric

• Small and fast, ideal for:

- Small lookup tables, FIFOs, temporary storage

• Inferred when arrays are very small (e.g. <32 elements)

- i.e. don’t have to explicitly write code for it

• Advantage: low latency and logic proximity

• Tradeoff: consumes LUT resources, which may be
needed for logic

42

• Block RAM (BRAM) — FPGA's Dedicated Memory Blocks

- Fixed capacity per block (typically 18K or 36K bits)

• Multiple configurations: e.g. 512×36, 1K×18, 2K×9

- Configurable address & data width

- Total size is fixed, but width/height can vary

• Wider data bus = fewer addressable locations

• Typically 1 or 2 access ports

- 1R1W (1 read, 1 write) or 2R (2 reads)

• Shared between loop iterations → can limit pipelining

• Used automatically by HLS for medium arrays

• View usage and mapping in synthesis reports (.rpt)A = h x w

A =
h x w

A
=
h
x
w

Presentation - Sioni Summers24/1/2020

Memory
• Memory capacity is an important

consideration when choosing a
device

• e.g. Xilinx 7-series Product
Select Guide

• FPGAs enable acceleration by
combining parallelism with an
application-specific memory
hierarchy

- explicitly controlling where and
how data is stored and
accessed

- unlike CPUs with general-
purpose caches

43

https://docs.amd.com/v/u/en-US/7-series-product-selection-guide
https://docs.amd.com/v/u/en-US/7-series-product-selection-guide
https://docs.amd.com/v/u/en-US/7-series-product-selection-guide

Presentation - Sioni Summers24/1/2020

Loop Analysis
• With FPGAs we can take advantage of pipeline processing

• We need to work to keep the pipeline filled with data

• Depends on the loops of our algorithm and their inter-dependencies

• First some terminology:

- ‘Interval’ or ‘Initiation Interval’ : gap between start of subsequent
executions of a process

- How often to trains depart the station? (Once per hour)

- ‘Latency’ : delay between start of execution of a process, and output of
results

- How long does it take to get from A to B? (3 hours 17 minutes)

• Main advantage of pipelining: latency and interval are not coupled!

44

Zürich HB Milano Centrale

Interval

Latency

In
te

rv
al

Latency

Presentation - Sioni Summers24/1/2020

Loop Analysis
• Loops can have dependencies that impacts scheduling, unrolling, and interval

• Consider this loop executed sequentially

- The loop has Latency 3 cycles, Interval 3 cycles

• This loop has no iteration dependence (iteration i does not depend on any other iteration)

- It can be pipelined: loop has Latency 3 cycles, Interval 1 cycle

• If all of a[i] can be read simultaneously (e.g. it’s in FPGA registers not BRAMs), the loop can be unrolled

45

for(i = 0; i < 3; i++)
 a[i] = a[i] + 1;

Read Add Write Read Add Write Read Add Write

for(i = 0; i < 3; i++)
 a[i] = a[i] + 1;

Read Add Write

Read Add Write

Read Add Write

for(i = 0; i < 3; i++)
 a[i] = a[i] + 1;

Read Add Write

Read Add Write

Read Add Write

time

Presentation - Sioni Summers24/1/2020

Loop Analysis
• Some loops have dependencies (loop-carried dependence)

• We can’t pipeline or unroll this loop since the read of iteration i depends on the write of iteration i-1

• For best performance with parallel architectures, we need to understand and optimise our loops

- Defines how we can distribute loop iterations across different processing units

- Merge loops where possible

- Break dependencies by reordering loops

46

for(i = n; i > 0; i--)
 a[i] = a[i-1] + x[i];

Read Add Write Read Add Write Read Add Write

Presentation - Sioni Summers24/1/2020

Loops Optimizing
• The way we control loops in HLS is partly through how we write the C++ (more on this later) and partly through pragmas

- Directives that the synthesis tool uses to map the code to RTL

47

for(i = 0; i < 3; i++)
 a[i] = a[i] + 1;

Read Add Write Read Add Write Read Add Write

for(i = 0; i < 3; i++)
#pragma hls pipeline
 a[i] = a[i] + 1;

Read Add Write

Read Add Write

Read Add Write

for(i = 0; i < 3; i++)
#pragma hls unroll
 a[i] = a[i] + 1;

Read Add Write

Read Add Write

Read Add Write

Presentation - Sioni Summers24/1/2020

Loop Optimizing
• The way we control loops in HLS is partly through how we write the C++ (more on this later) and partly through pragmas

- Directives that the synthesis tool uses to map the code to RTL

- Recall our vector sum example from the arithmetic section

- The provided implementation was scheduled like this:

48

void vec_sum(const data_t in1[8],
 const data_t in2[8],
 data_t out[8]) {
 for (int i = 0; i < 8; ++i) {
 out[i] = in1[i] + in2[i];
 }
}

Presentation - Sioni Summers24/1/2020

Loop Optimizing
• The way we control loops in HLS is partly through how we write the C++ (more on this later) and partly through pragmas

- Directives that the synthesis tool uses to map the code to RTL

- Recall our vector sum example from the arithmetic section

- Exercise: now add these pragmas to the code, verify the equivalence with c simulation, run the c synthesis and view schedule

49

void vec_sum(const data_t in1[8],
 const data_t in2[8],
 data_t out[8]) {
 #pragma HLS array_partition variable=in1
 #pragma HLS array_partition variable=in2
 #pragma HLS array_partition variable=out
 #pragma HLS pipeline
 for (int i = 0; i < 8; ++i) {
 #pragma HLS unroll
 out[i] = in1[i] + in2[i];
 }
}

???

Presentation - Sioni Summers24/1/2020

Loop Optimizing
• The way we control loops in HLS is partly through how we write the C++ (more on this later) and partly through pragmas

- Directives that the synthesis tool uses to map the code to RTL

- Recall our vector sum example from the arithmetic section

- The order and parallelization of operations has completely changed

50

void vec_sum(const data_t in1[8],
 const data_t in2[8],
 data_t out[8]) {
 #pragma HLS array_partition variable=in1
 #pragma HLS array_partition variable=in2
 #pragma HLS array_partition variable=out
 #pragma HLS pipeline
 for (int i = 0; i < 8; ++i) {
 #pragma HLS unroll
 out[i] = in1[i] + in2[i];
 }
}

Skip

Presentation - Sioni Summers24/1/2020

Pragma details
• What did each pragma do?

51

void vec_sum(const data_t in1[8],
 const data_t in2[8],
 data_t out[8]) {
 #pragma HLS array_partition variable=in1
 #pragma HLS array_partition variable=in2
 #pragma HLS array_partition variable=out
 #pragma HLS pipeline
 for (int i = 0; i < 8; ++i) {
 #pragma HLS unroll
 out[i] = in1[i] + in2[i];
 }
}

Partition: make all of the array elements

 simultaneously readable

Unroll: execute each loop iteration in parallel

Pipeline: enable concurrent operation execution

Presentation - Sioni Summers24/1/2020

Pragmas / loops
• Exercise: Try each of the pragmas in isolation, and log some key metrics:

- Look at the schedule viewer for each one and reason what constraints are impacting the behaviour

52

void vec_sum(const data_t in1[8],
 const data_t in2[8],
 data_t out[8]) {
 for (int i = 0; i < 8; ++i) {
 #pragma HLS unroll
 out[i] = in1[i] + in2[i];
 }
}

LUT Latency Interval

No pragmas

Unroll

Array
Partition

Pipeline

All pragmas

Presentation - Sioni Summers24/1/2020

Partial unrolling
• We can also partially unroll a loop and partially partition an array

- Useful when fully unrolling a loop will consume more resources than the chip has available

- Example: partially unrolled with “factor = 2”

53

Read Add Write

Read Add Write

Read Add Write

Read Add Write

Read Add Write

Read Add Write

Read Add Write

Read Add Write

time

for(i = 0; i < 3; i++)
 a[i] = a[i] + 1;

Read Add Write Read Add Write Read Add Write

for(i = 0; i < 8; i++)
#pragma hls unroll factor=2
 a[i] = a[i] + 1;

Presentation - Sioni Summers24/1/2020

Loop bounds
• Some of the loop optimizations are only valid when the loop bounds are known at C Synthesis time

- Consider: unrolled loop create N copies of the loop body in hardware → not possible if N is a variable

- Recall our MET example top function: T_met compute_met(unsigned short n_particles, T_pt* pt, T_pt*
phi)

- The HLS Synthesis assumes the maximum value of unsigned short iterations for the loop over n_particles

• Sometimes this is unavoidable, but sometimes small changes can enable access to loop optimizations

- Tell HLS the real limits: #pragma HLS loop_tripcount min=<int> max=<int> avg=<int>

- Change a variable iteration loop to a fixed size one

- Can then apply any unrolling, pipelining

- May need to handle edge cases e.g. with conditional execution if out of loop bounds

54

WARNING: [HLS 200-936] Cannot unroll loop 'LOOP_X' (loop_var.cpp:22) in function 'loop_var':
cannot completely unroll a loop with a variable trip count.

Presentation - Sioni Summers24/1/2020

Merging loops
• Code that seems well organized and natural in regular C++ for CPU may be suboptimal for HLS: merged loops

- Example from HLS documentation

55

void top(a[4], b[4], c[4], d[4]){

 Add:
 for(i=3; i>=0; i++){
 if(d[i])
 a[i] = b[i] + c[i];
 }

 Sub:
 for(i=3; i>=0; i++){
 if(!d[i])
 a[i] = b[i] - c[i];
 }

}

• Left: HLS will execute the full Add
loop then the full Sub loop

- Plus a ‘control’ cycle to enter and
exit each loop

- Latency will be 11 cycles

• Right: HLS will execute the merged
loop

- Latency will be 6 cycles

void top(a[4], b[4], c[4], d[4]){

 AddOrSub:
 for(i=3; i>=0; i++){
 if(d[i])
 a[i] = b[i] + c[I];
 else
 a[i] = b[i] - c[i];
 }

}

https://docs.amd.com/r/en-US/ug1399-vitis-hls/Merging-Loops

Presentation - Sioni Summers24/1/2020

Loops Exercise: faster MET
• Exercise: improve the performance of the MET computation from the first session

- Use all of the loop analysis and optimization strategies from this section

- Reorganize the code, use pragmas

• Challenge: achieve the lowest latency for the MET computation

- Constraints: the resource usage must be less than 100% of the Arty 100 after C Synthesis individually for all resource types

- The MET numerical result must satisfy the same limits: 10 GeV absolute and 2% relative maximum difference vs the floating point

56

DSP LUT FF BRAM Latency Interval Worst
Error

Mean
Error

Original ? ? ? ? ? ? ? ?

Optimized ? ? ? ? ? ? ? ?

