


Introduction

e High Level Synthesis is a new paradigm in programming FPGAS
- Write algorithms — synthesis tool determines the hardware
- Input using C++ — higher level abstraction than HDLs

- Productivity ~ — create working designs faster
- Sophistication ~/ — create advanced designs with complicated algorithms

e But working with HLS still requires expertise, and a foundation in HDL is a great starting point
¢ Main topics of this part:
- Number representations and arithmetic

- Loop Analysis and Optimization
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e Staff at CERN working on Level 1 Trigger Upgrade for CMS experiment

About me

- Mostly designing and implementing detector reconstruction algorithms for

Level 1 Trigger

- Track reconstruction, vertexing, particle flow, jets, jet tagging, ML

- Task leader in Next Generation Triggers project

e PhD High Energy Physics Imperial College London

- Thesis: “Applications of FPGAS to triggering in particle physics”

- Designing physics algorithms with high level languages for FPGAs

¢ Also deploying Machine Learning into FPGAs for low latency

- hlsdml coordinator 2020-2022, creator and maintainer of conifer

¢ | eading Edge SpAlce project at CERN: ML in FPGA for satellites
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Part 1

Numerics: Fixed Point Arithmetic
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e On your CPU (and GPU) you are probably familiar with integer and floating point numerical formats
¢ Integer represents integer values in a fixed number of bits (e.g. 32, 16, 8)
¢ Foating point represents values with a mantissa and exponent : m - 2¢

- |t’s like scientific notation with binary

e Simplified examples, representing the number 113, ignoring sign (positive values only)

_ 102 101 100 Base 10 floating point 100 10- 10-2 100 10
Base 10 integer (3 digit mantissa, 10

11310 ’ ] 3 2 digit exponent)
1.13 x 1020

_ 27 26 25 24 23 22 21 20 Base 2 floating point
Base 2 integer (4 bit mantissa, 23 22 21 20 23 22 21 20

14 x 28 =112 1 1 1 0 1 0 0 0

(Approximate)
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Operations

e On your CPU (and GPU) you are probably familiar with integer and floating point numerical formats

¢ Integer represents integer values in a fixed number of bits (e.g. 32, 16, 8)

¢ Foating point represents values with a mantissa and exponent : m - 2¢

e Demo:

- Suppose we have decimal integers ' x = 15 and y

277

- Compute z = x + y using “long hand”

Y

Z
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Integers

e On your CPU (and GPU) you are probably familiar with integer and floating point numerical formats
¢ Integer represents integer values in a fixed number of bits (e.g. 32, 16, 8)

¢ Foating point represents values with a mantissa and exponent : m - 2¢

’ Note: Ob prefix

- Suppose we have 4-bit unsigned (positive) integers  x = 0b0011 and y = 0b0101 means binary number

- Compute  z x + y — usethe “long hand” method and remember to “carry the 1”
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Overflow, saturation, truncation

e \When working with decimals we usually perform “bit growth” intuitively e.g.. 9 + 3 = 12 — one more digit in result

o \\ith computer arithmetic the bit sizes are usually fixed e.g. 4, 8, 16, 32 bits
* \When results of operations exceed the constraints of the precision, we can get overflow

- ;. compute 1210 + 510 with 4 bit operands and 4 bit result ie ignore anything beyond 4 bits
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Bit Growth

* \When results of operations exceed the constraints of the precision, we can get overflow
o \\Vith computer arithmetic the bit sizes are usually fixed e.g. 4, 8, 16, 32 bits

¢ \\le can increase the bit precision of the result of an operation in an FPGA to compensate for overflow

Provided the result is stored in a different memory/register/logic than the operands of smaller width

. : assuming unsigned integers, what would be the required bit-width for the result of:
- a 4-bit integer summed with a 4-bit integer”? - a 4-bit integer multiplied with a 4-bit integer?
- a 4-bit integer summed with a 3-bit integer? - a 4-bit integer multiplied with a 3-bit integer?
- a N-bit integer summed with an M-bit integer”? - a N-bit integer multiplied with an M-bit integer?

. consider the maximum values of each operand
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Two’s complement

e S0 far we used unsigned integers, but that’s limiting
e How do we represent negative values with fixed size binary numbers?
¢ Most common method: two’s complement
e [0 work out the two’s complement representation of a negative number (e.g. -610 in 4 bits)
- Start with the binary representation of the absolute value: 610 = 0b0110
- Invert all of the bits: ' 0b0110 —» 0b1001
- Add 1 to the value, ignoring overflow: 0b1001 — 0b1010
e Observations:
- The most significant bit always denotes the sign — leading O — positive or zero, leading 1 — negative (but not sign & value)
- We can do arithmetic with numbers in this representation

- : take two 4 bit two’s complement numbers  x = +310 , ¥y = -110 andcompute x + y In binary
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Fixed Point

e On CPU / GPU we need to work with number types that are native to the hardware

- We can emulate other number types but it arithmetic won’t run with high performance
e On FPGA we are designing the hardware itself, so we can use any number representation that we like
o \\We'll see this for ourselves soon, but integer operations are much less resource and latency intensive than floating point
e But what if we want to represent fractions”? Enter fixed point
¢ Fixed point combines some of the convenience of floating point with the low hardware cost of integers
e Recall: floating point is m - 2¢ = In fixed point the value of exponent is fixed so it doesn’t need to be explicitly represented

e Example: 8 bit unsigned fixed point with 4 integer bits, 4 fractional bits, representing 9.31251¢
— Integer — | —— Fraction ——

23 22 2t 20 .21 22 23 24

Binary point / radix point
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Fixed Point

. what are the values in base 10 of these 8 bit unsigned fixed-point numlbers”?

- What are the maximum and minimum values of the three fixed-point number formats?

— Integer —— ;| —— Fraction ——

23 22 2t 20 21 22 23 24

Integer . Fraction

2> 24 23 22 21 20 21 22

Fraction

24 95 926 927 928 929 9211 9-11

Presentation - Sioni Summers
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— Integer —— ;| —— Fraction ——

23 22 2t 20 21 22 23 24

=9 .312510
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Fixed Point

. can you generalise the rules for bit-growth of integers to bit-growth of fixed-point?
- 1) For addition/subtraction and 2} multiplication. . consider maximum and minimum values
- Operand O: Fy, fractional bits, Iq integer bits (Fo + I, width); Operand 1: F; fractional bits, I: integer bits (F1 + I1 width)
- Recall the integer bit-growth rules, with operand widths "N’ and ‘M’
- for addition & subtraction the result bitwidth should be 1 + max(N,M)

- for multiplication the result bitwidth should be N + M

Presentation - Sioni Summers
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Introduction to High Level Synthesis

e Now we’ll get some hands on experience with numerics in High Level Synthesis
e Reminder: why do we use it”?
- Write FPGA designs in C++: lower barrier to entry than HDL
- Rapid design space exploration (explore resource / latency tradeoffs with ease); realise complex algorithms

o X Typical HLS workflow

- 9\, Write C/C++ kernel: my_function.cpp

- # Create testbench: my_function_tb.cpp to simulate inputs/outputs

- 4@ Run HLS flow using Vitis HLS:
- G Simulation: functional correctness check using the testbench — HLS C++ code is executed on the CPU
- C Synthesis: HLS C++ code is synthesized into RTL + resource/latency estimates
- Co-Simulation: validate generated RTL against testbench — clock cycle accurate

e Optimize latency, throughput, and resource usage (LUTs, FFs, DSPs, BRAM)

- Explore trade-offs using loop unrolling, pipelining, precision tuning

24/1/2020 Presentation - Sioni Summers
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Introduction to High Level Synthesis

e [0 Structure of a Typical HLS Project
-\ my_function.cpp — algorithm to be synthesized to FPGA
- nul my_function_tb.cpp — C++ testbench that drives inputs and checks outputs

- [ his_prj/ — directory with reports, logs, RTL, etc. produced from the HLS tool

EEEEEEE

open project my proj

add files my function.cpp

add files -tb my function tb.cpp
open solution "solutionl”

set top my function

create clock -period 5

csim design

csynth design

cosim design

24/1/2020 Presentation - Sioni Summers
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Introduction to High Level Synthesis

e “\ my_function.cpp — algorithm to be synthesized to FPGA
— This is where you describe your logic in standard C++ (with some HLS-specific types)

e @ Define a “top-level” function

— This is the function that Vitis HLS treats as the hardware module interface
— Must use scalar or array arguments (no dynamic memory, no STL containers)

Use ap_fixed datatypes for fixed-point arithmetic

— Provided by the ap_fixed.h header
— Enables precise control of bit widths for resource and accuracy trade-offs

e /ap fixed<16, 5>
— 16-bit signed number: 5 integer bits, 11 fractional bits

e . Jap fixed<8, 3, AP RND, AP SAT>
— 8-bit signed, 3 integer bits, 5 fractional, AP_RND = round to nearest; AP_SAT = saturate on overflow

e _ Use #pragma HLS directives to control synthesis behavior

— Guide unrolling, pipelining, array partitioning, and interface behavior
— [These affect latency, throughput, and resource usage

24/1/2020 Presentation - Sioni Summers
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Introduction to High Level Synthesis

e Example HLS top-level function, sum two dimension-8 vectors of 16 bit, 8 integer bit values

#include “ap fixed.h”
typedef ap fixed<lo, 8> data t;

vold vec sum(const data t 1inl[8], const data t 1nZ2[38], data t out[8])

VectorLoop:
for (int 1 = 0; 1 < 8; ++1i) {
out[i] = inl[i] + in2[i];

¢ \When you have all of the ingredients, launch the workflow from the command line with:

-vitis hls -f csim.tcl ; vitis hls -f csynth.tcl ; vitis hls -f cosim.tcl

- This will create a project, run simulation, synthesis, and/or co-simulation as defined in the script

24/1/2020 Presentation - Sioni Summers
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Analyzing Designs

e After we run C Synthesis and Co Simulation, we generate many reports and also an HLS project
- All of them contain very useful information for analyzing the design
- |In particular:

- ® <project name>/<solution name>/syn/report/csynth.rpt
- ® <project name>/<solution name>/sim/report/<top name>_cosim.rpt

- These reports can also be viewed in the GUI (next slides)

+ Performance & Resource Estimates:

PS: '+' for module; 'o' for loop; '*' for dataflow

e —— - - f————————— f————————— f————————— f———————— - F————————— - -t ——————— f————————— +————— +

| Modules | Issue] | Latency | Latency | Iteration]| | Trip | | | | | | |

| & Loops | Type | Slack]| (cycles) | (ns) | Latency | Interval| Count| Pipelined| BRAM | DSP| FF | LUT | URAM |

e —— - - f————————— f————————— f————————— f———————— - F————————— - -t ——————— f————————— +————— +

| + vec sum | — | 0.87] XX | XXX . XXX | XX | XX | XX | v/n| XX | XX | XX | XX | XX |

| o VectorLoop | — | 7.30] X | XXX . XXX | XX | XX | XX | v/n| XX | XX | XX | XX | XX |

e —— - - f————————— f————————— f————————— f———————— - F————————— - -t ——————— f————————— +————— +
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e \We will also use the HLS GUI for some analysis, to open: run vitis hls -classic (classic option for = 2023.2)

HLS GUI

e You may use whichever file editor you like, but the HLS GUI does provide some useful auto-completion

24/1/2020

File Edit Project Solution Window Help

|

s & :»

B Explorer x 8 Module Hierarchy

v @ ArithmeticProj
» @ Includes
v = Source
B vec_sum.cpp
b 1= Test Bench
» 3 solution

Al Flow Navigator x

w C SIMULATION
* Run C Simulation
P Reports & Viewers
w C SYNTHESIS
» Run C Synthesis
w Reports & Viewers
Report
Function Call Graph
Schedule Viewer
Dataflow Viewe
w C/RTL COSIMULATION
* Run Cosimulation
w Reports & Viewers
Report
Function Call Graph
Timeline Trace

—ARARL CRACAITATIAM

-
Y

1
|
|

g Synthesis Summary(solution)

[
VectorLoop:

[i] =

B Console 'J Errors 6 Wa

1ings

vec_sum.cpp X

" ol
M !

- = a- Outline x n# Directive

I! r = : .
vec sum.h

@ vec_sum(const data t[], const data t

Guidance x W Properties Man Pages B Git Repositories %2 Mo

[ [ B 17 Guidance-infos E 0 Guidance-Warnings 0 Guidance-Errors =

Name

w [@ All Categories
v [ SCHEDULE
| [HLS 200-1470]
v [@ RUNTIME
| [HLS 200-111]

solution x

Web Help

Detalls

Pipelining result : Target Il = NA, Final Il = 1, Depth = 2, loop "VectorLoop'

Finished Command cosim_design CPU user time: 14.57 seconds. CPU system time: 1.94 seconds. Elapsed time: 16.73 seconds; current allocated memory: 11.559 MB.
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HLS GUI

e [he analysis after running synthesis is especially useful e.g. schedule viewer

- did the design map to HW as expected? Where are the bottlenecks in the design impacting performance?

File Edit Project Solution Window Help
© I8 i> iz i@ |

B Explorer & Module Hierarchy x = ® g Synthesis Summary(solution) B vec sum.cpp = Schedule Viewer(solution) x

n O B | - .
vec sum | Focus i+ 4 00 0 B @
Name

| Operation\Control Step
w O vec_sum |

B vectorLoop | ifalloca)

| i_write_InS({write)
br_In5(br)

v \ectorLoop

i_1(read)
icmp_In5{icmp)
add_In5(+)

br_In5(br)
i_cast(zext)
in1_addr(getelementptr)
in1_load(read)
in2_addr(getelementptr)

in2_load(read)
i_write_In5({write)

NIl Flow Navigator x out r_addr(getelementptr) Goto Source
out_r_addr_write_In6({write)
w C SIMULATION 4 br_In5(br)
» Run C Simulation
P Reports & Viewers
w+ C SYNTHESIS
» Run C Synthesis

+ Reports & Viewers

Report 8 Console ¥ Errors & Warnings Guidance M Properties Man Pages § Git Repositories %3 Modules/Loops B CSource x
Function Call Graph

Schedule Viewer

Pis WNOTFK S a [edl

Dataflow Viewer
w C/RTL COSIMULATION (
» Run Cosimulation VectorLoop:
w Reports & Viewers \ :
Report }
Function Call Graph
Timeline Trace

Wave Viewer

— LAl ERAERMTATIAL
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Exercise 1

o \We'll work with the project that sums together 8-dimension
vectors

vold vec sum(const data t 1nl[8],
const data t 1in2[8],

data t out[8])
for (i1nt 1 = 0; 1 < 8; ++1) {

out[i] = inl[i] + in2[i];

e [7 go to directory arithmetic/

e Find all of the necessary files for a first HLS project:

\ vec_sum.h & vec_sum.cpp — algorithm to be synthesized to

FPGA :

- nl testbench.cpp — C++ testbench that drives inputs and
checks outputs

EEEEEEE

- == csim.tcl, csynth.tcl, cosim.tcl— automates synthesis/ FF BRAM Latency Worst  Mean
verification in batch mode

Error Error

o . run the scripts, and browse the reports and Vitis
HLS GUI ? ? ? ? ? ? ?

- What is the latency and resource usage of this design?
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Exercise 2 & 3

® veCc_sum.h has a line:

- typedef float data_t; that defines that we used floating point for all of the variables
o . adapt the function to use fixed point instead

- Find the necessary number of integer bits to avoid overflow

- Find the smallest total bit width that keeps the worst error smaller than 0.1

- Track your experiments in a results table, and plot LUT usage vs error

- Note running the script overwrites the existing project, so log your results after each run

FF  BRAM Latency Worst Mean
Error Error

Width 1 ? ? ? ? ? ? ?

Width 2 ? ? ? ? ? ? ?

Mean Error

Width 3 ? ? ? ? ? ? ?

24/1/2020 Presentation - Sioni Summers
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Fixed Point

 The rules for bit-growth are important for understanding * If you have a long sequence of arithmetic operations the

the types you give to variables in HLS

bit-growth can result in very wide data types

- But it’s not the only factor! - Consider that one DSP has one 25 and one 18 bit input

e |t can be useful to use some domain knowledge about the realistic values to constrain the types

l.e. grow then shrink “
e >

e Example: d=v -t distance: meters; time: seconds; velocity: meters per second

24/1/2020

For a car, suppose v € [0, 50] m/s (50 m/s = 180 km/h) ; t € [0, 20] s sampling device
Thenv = ap ufixed<10,6> andt— ap ufixed<10,6> — values up to 63, steps of 1/16 ~ 0.06
Bitgrowth multiplication rule yields = ap_ufixed<20, 12> — values up to 4095 m, steps of 1/256 ~ 0.004

But given our constraints the real maximum value could be 1000 m, and 0.004 m is too precise

Couldclipto ap fixed<14, 10, AP RND, AP SAT> for our real range and a reasonable precision, with rounding and
saturation for safety — values up to 1023 m, steps of 1/16 ~ 0.06 m

Presentation - Sioni Summers
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Long Exercise 1: Missing Iransverse Energy

e Now that you've learned the essentials of fixed point arithmetic, it’'s time
to put it to practice with an extended exercise

* One important quantity that we compute in FPGAs in the CMS Level 1 S Experment al LHE, GERY

Data recorded: Mon Aug 2 05:02:51 2010 CEST

rigger system is Missing Transverse Energy (MET) Run/Event: 142132/92434735

- Due to momentum conservation, the vector sum over particle momenta
must be zero*

- If we find a significantly non-zero MET it’s of interest

- |t could be mismeasurement, or a known particle that doesn’t interact
with the detector e.g. neutrino

- Or it could be a new type of particle that doesn’t interact with the
detector

MET
49.9 GeV

- 7 It’s only true Iin the transverse plane since the colliding particles are
constituents of the proton, potentially carrying different momenta in the
longitudinal direction
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Exercise

e You need to compute the MET (vector sum) from all of the particles in each
event

- An event refers to all of the particles produced from one collision at the LHC
e A particle Is represented as an object with three properties:

- Transverse momentum — pr

- Angle at vertex — ¢

- ‘Angle’ in longitudinal plane — n
e MET is the magnitude of the vector sum of particles
® YOU are given:

- a file with particles from 1000 simulated events of a process with real MET*

- a reference implementation in Python

24/1/2020 Presentation - Sioni Summers
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Maths functions

e There is a library of math functions for HLS available as #include “hls_math.h”
- This include implementations of the trigonometric functions you'llneed e.g. hls::cos , hls::sin , hls::sqrt
- Use them for your first attempt
- Make a plot to validate the HLS trigonometry on your fixed point against the C++ math trigonometry on floating point
® |[n some cases we can be more efficient by preparing a Look Up Table that we can read with an address
- Fill the table with the ‘ideal’ floating point function during compile / synthesis time
- Read the table using the runtime data in the FPGA

- If you have time, see if you can reduce the latency and resource usage of the trigonometry functions by replacing the HLS
functions with a precomputed table

- Validate your tables with a plot to compare

24/1/2020 Presentation - Sioni Summers

27



Evaluating your results

l —— MET Python Reference b —— Example MET
| | | | 107 - "‘Lq MET HLS Implementation |60 4
* |n this exercise we will look at three metrics: ; . m
1. Accuracy of the MET calculation against the 2 b 7 X
Python reference 3 w0 “ 30 -
: 20 -
- Aiming for 10 GeV absolute and 2% relative l] 0.
maximum difference O | u,r"’ 1]’[m
10" 1 | | il | | I | | 0 1 . n . | . .
. . 0 200 400 600 800 1000 -20 ~10 0 10 20
- Use plots and other tools in the provided Python MET [GeV] AMET(Python, HLS) [GeV]
notebook to judge P P e e I N
2. Resources of MET calculation HLS function 2 | BRAM | DSP | eE | LUL | URAM|
+——————— +——————— +t—————————— +t—————————— +————- +
- Use synthesis reports 4 (1%) 6 (2%) 2139 %) 43064 (6%) -
- = 1834 5) 3614 (5%) -
3. Latency of MET calculation HLS function — — — — —
| - 4 (1%) - 90 (~0%) | 311 (~0%) -
- Use synthesis reports and cosimulation _ _ _ _ _
+——————— +——————— +t—————————— +t—————————— +————- +
3
tomm - Fom - e et e T - e ettt +
| | | Latency (Clock Cycles) | Interval (Clock Cycles) | Total Execution Time |
+ RTL + Status +----—--"-"-"-"""""""""""""""""""""""""""""—"——-"————= e e + (Clock Cycles) +
| | | min | avg | max | min | avg | max |
to—m - to—m - ettt R ittt ettt o +
| VHDL | NA | NA | NA | NA | NA | NA | NA | NA |
| Verilog| Pass | 428 | 1312 | 2756 | 429 | 1313 2757 | 1313303
to—m - tomm - e it L e Pt R e et P R et e +
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Improving your results

e Accuracy of the MET calculation

Explore the dataset and reference calculation in Python to choose
appropriate precision

- Remember that every operation and variable can have a different precision!

- The HLS testbench from C Simulation writes a CSV file that the Python Operation\Control Step
script can read to compare (alloca)
|_write_In9{write)
- Use the plots and “np.testing.assert_allclose” cell to evaluate and improve br_ln9(br)
- When you change something, save the results to a different filename so ;;:rf;ef::;mmp]
that you can compare and improve add 1n9(+)
br_In9(br)
e Resources and Latency _cast(zext)
in1_addr(getelementptr)
, , , , . in1_load(read)
- Use the Schedule viewer and analysis view in Vitis HLS GUI o
in2_load(read)
- Giving labels to for-loops in HLS C++ can help identify them in reports i_write_ln9(write)

add In11(+)

- Defining functions for computation blocks can help identify them in reports ML

out r addr write In11(write)
br In9(br)
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Part 1.1

Interfaces




Introduction

e |n the first HLS exercises, we used:
- C Simulation to interpret the numerical results
- C Synthesis to evaluate the resource usage and latency

e But we neglected something important: how the HLS module will communicate with the outside world

¢ [his section will give a brief overview and an example on the Arty 100

- Just to give you a flavour of the options

24/1/2020 Presentation - Sioni Summers



The basics

* \WWhen we run the C Synthesis we produce some RTL output: VHDL or Verilog, can be packaged as an “IP”

- This RTL has some specific interface and an expected handshaking mechanism

- Two things define the RTL interface:

- The function signature of the C++

entity
port (
- Any interface directives inside the function ap_
ap
ap
vold vec sum(const data t 1nl[8], const data t 1n2[8], ap
data t out[8]) { ap_
VectorLoop: ap
for (int 1 = 0; 1 < 8; ++1) { 1
out[i1] = inl[i1i] + 1n2[i];

vec sum 1s

clk : IN STD LOGIC;
rst : IN STD LOGIC;
start : IN STD LOGIC;
done : OUT STD LOGIC;
idle : OUT STD LOGIC;
ready : OUT STD LOGIC;

inl address0O : OUT STD LOGIC VECTOR (2 downto 0);
inl ce0 : OUT STD LOGIC;

inl g0 : IN STD LOGIC VECTOR (10 downto O0);

in2 address(O : OUT STD LOGIC VECTOR (2 downto 0);
inZ2 ce0 : OUT STD LOGIC;

in2 g0 : IN STD LOGIC VECTOR (10 downto 0);

vec_sum_0
out r addressO : OUT STD LOGIC VECTOR (2 downto 0);
- = fgiﬁ' out r ce0 : OUT STD LOGIC;
- . I+ e - out r we0 : OUT STD LOGIC;
o N g T out_r_wed |- out r d0 : OUT STD LOGIC VECTOR (10 downto 0) );
L oo [ M| s end;
a In2_q0[10:0] nu‘t .r_add;i;ﬁ;-ﬂ[E;G]
o / /J;_\—‘ i :)ut_r_dl}[ 10:0]
"‘ T . Vec sum (Pre-Production)
24/1/2020 Presentation - Sioni Summers
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Interface types

e H|S abstracts huge flexibility about the interface — full guide from Xilinx “Interfaces of the HLS Design”

- You can make very big changes about the interface type with small code changes

Interconnect

- Even for an array, the access pattern of the array in the code will impact the ports e m Slave
AW vt L > 41
Master AR B —lr R R
" " . #1 w w l
e [he main types of interface: = Pl =
’_ “—AR  Slave
' L > #2
- Bare registers, memory ports, streams - ) = | b
Master AR g e
#2 w W AV AW
- AXI Protocol (Advanced eXtensible Interface) : AXI4-Lite, AXI4-Stream, AXI4-Master - ;l—L e s
Read Arbiter! Decoder A —+*—~>_£ ]_\:
e Bare registers, memory ports, streams: * AXI Protocol
- Low level, low overhead, full control - Flexible communication and topology
- Manual integra’[ion - Easy iﬂ’[egra’[iOﬂ with other AMD ”:), full board deSigﬂS,
AMD Software

e \WVe use this for designs at the CMS Level 1 Trigger
* \\Ve use this for accelerator designs in hisdml and conifer
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Making a complete design

e After defining how the HLS will module will communicate, we need to integrate it into a full design
e [here are a few main ways, all useful for different contexts:

- Using the ‘vitis’ tool (formerly SDAccel) to target boards like Alveo

-e.g. v++ -t hw --platform xilinx u250 gen3x16 xdma 4 1 202210 1 -o hls kernel.xo

- One command to create a full design (connecting AXI ports in the HLS kernel to PCle) and run synthesis & implementation

with Vivado
- ;o:;slnlg_system_o_axl_pernph
- Using Vivado and ‘IP Integrator’ (s wm ,
T e g e.g. from conifer
- Connect together blocks with some abstraction and automation |
- Tool recognises common interface types that can be connected L o3| i ' |
- | [ e e 7 CLLE o ® or -/ I e
- Using Vivado and VHDL or Verilog g [ s L -
- Make your own top-level design and instantiate the HLS RTL inside SR

slowest_sync_clk mb_reset

—Q ext_resst_in bus_struct_reset[0:0]
€ aux_reset_in peripheral_reset[0:0]
= mb_debug_sys_rst interconnect_aresetn|[0:0]
= dcm_locked peripheral_aresetn[0:0]

Processor System Reset
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Simple HLS Integration Example

e \We will use the UART design from Day 3

- Use your own implementation or the solution

e Instead of looping the RX data back to the TX output, we UART
connect to an HLS module Receiver

- HLS module will keep a rolling sum of the received data
and send the current sum after every update

e [he design will use:
- stream interfaces in HLS

- VHDL integration in Vivado

UART
Transmitter
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Simple HLS Example

e Accumulator the value received from UART and

send the accumulator value

e Static variables

24/1/2020

- After we program the FPGA, the design stays

running there indefinitely

We “call” the HLS function in the FPGA by sending
a start signal

In this design we want to accumulate the value
every time we send new data

We need to persist the value in the device: static
variables do that

In C++: static variables maintain their value
between function calls

In FPGA: the static variable will be represented with
some register / LUT that is not reset after function
completion

vold accumulator (ap uint<8> 1in, ap ulnt<s8>& out)
static ap uint<8> sum = 0;
sum += 1in;

entity accumulator 1s

port (

out = sum;
ap clk : IN STD LOGIC;
ap rst : IN STD LOGIC;
ap start : IN STD LOGIC;
ap done : OUT STD LOGIC;
ap 1dle : OUT STD LOGIC;
ap ready : OUT STD LOGIC;
in r : IN STD LOGIC VECTOR (7 downto 0);
out r : OUT STD LOGIC VECTOR (7 downto 0);
out r ap vld : OUT STD LOGIC );
end;
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HLS Integration Exercise

® Exercise:
I
I
- Connect the ports of the HLS entity in the top.vhd design s
to the correct signals of the UART RX and TX entities a0, 1ot
|
I |
- Hints: : |
I |
- use the diagram to the right for guidance ap_start
N | | | ap_idle |
- you won’t need additional logic besides connecting |
signals ap_ready |
I
- L\ ap done '
- Synthesize, Implement the design in Vivado and program |
the Arty I
I
I
- Test with the Serial console or provided Python driver Data Inputs |
Data Outputs :
I
return :

24/1/2020

AMD: Port level protocol with default synthesis
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Part 2

Loops: analyzing and optimizing

CMS
CA

.
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Introduction

e | 0op optimization is the core concept to efficient HLS design
e |n this section we’ll go over the fundamental principles and explore how to control loops in HLS code
¢ Basics:

e | oop bounds: are they constant (at synthesis time) or variable (data dependent)?

- e.g. the vector addition example had constant loop bounds (dimension 8) but MET exercise had variable loop bounds (N
particles)

e Memory: arrays are implemented in “memory” in the FPGA

- |t's difficult to think albout loops without learning about more about memory

- Arrays can be mapped to any memory type: LUTs & FFs, Block RAM (BRAM), Ultra RAM (URAM), External DDR

- The different types have different attributes in terms of size — performance tradeoft
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Pipeline

o \With FPGAs we can take advantage of pipeline processing
¢ \Ve need to work to keep the pipeline filled with data
e Depends on the loops of our algorithm and their inter-dependencies

¢ [irst some terminology:

- ‘Interval’ or ‘Initiation Interval’ : gap between start of subsequent
executions of a process

- How often to trains depart the station? (Once per hour)

- ‘Latency’ : delay between start of execution of a process, and output of
results

- How long does it take to get from A to B? (3 hours 17 minutes)

e Main advantage of pipelining: latency and interval are not coupled!

Interval

00000000, 00000000

L © S ——————— T ———— S——

Latency
Zurich HB
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Memory

e Here are the main types of memory available on FPGAS

24/1/2020

- Note that DDR is an external component — the others are inside the FPGA

Max Size (per
block)

Memory Type

Access Ports Latency

Register / Logic ~bits unlimited 1 clk

LUTRAM ~bits 1R1W 1 clk

18K-36K bits T1R1W or 2R 1 clk
288K bits 1R1W 2 clk
External DDR GBs AXI burst 100+ clk

Presentation - Sioni Summers

Typical Use Notes

Scalars, small Inferred from
arrays variables

Small, distributed Uses LUTs —
structures consumes logic

. Parallel access
Medium arrays,

buffers o
partitioning
_ Only on large
Large buffers, high devices (e.q.

reuse
Ultrascale+)

Sequential access
only; not suitable
for pipelining

Large datasets,
software-like
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LUT RAM vs Block RAM

o LUT RAM (a.k.a. Distributed RAM) ¢ Block RAM (BRAM) — FPGA's Dedicated Memory Blocks
- Built from LUTs in the logic fabric - Fixed capacity per block (typically 18K or 36K bits)

e Small and fast, ideal for: e Multiple configurations: e.g. 512x306, TKx18, 2Kx9
- Small lookup tables, FIFOs, temporary storage - Configurable address & data width

e Inferred when arrays are very small (e.g. <32 elements) - Total size is fixed, but width/height can vary

- l.e. don’t have to explicitly write code for it . .
plcitly ¢ \\lilder data bus = fewer addressable locations

e Advantage: low latency and logic proximity Toically 1 or 2 t
e Typically 1 or 2 access ports

e [radeoff: consumes LUT resources, which may be
needed for |OgiC - 1R1W (1 read, 1 Wl’ite) or 2R (2 reads)
e Shared between loop iterations — can limit pipelining
e Used automatically by HLS for medium arrays

:I e \View usage and mapping in synthesis reports (.rpt)
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e Memory capacity is an important
consideration when choosing a
device

¢ c.g. Xilinx 7/-series Product
Select Guide

e FPGAS enable acceleration by
combining parallelism with an
application-specific memory
hierarchy

- explicitly controlling where and
how data Is stored and
accessed

- unlike CPUs with general-
pUrpPoOse caches

24/1/2020

XC756
XC7515

XC7525
XC7550
XC7575

XC75100

XC7A12T
XC7A15T
XC7A25T7
XC7A35T
XC7A50T
XC7A75T

XC7A100T
XC7A200T7

XC7K70T
XC7K160T
XC7K325T
XC7K355T
XC7K410T
XC7K420T
XC7K480T

XC7V585T
XC7v2000T
XC7VX330T
XC7VX415T
XC7VX485T
XC7VX550T
XC7VXe90T
XC7VX980T

XC7VX1140T
XC7VH580T
XC7VH870T

Memory

lock RAM Capacity (Mb)

o

2700

2700

4860

4860
11700
16020

~J —
i N - 00
N o N o
ol [ N
Xio o
-]
o
= .

Spartan-7 FPGAs

Speed grade -1 -2
True dual-port Block RAM F,,,, [MHz] 388 461
Artix-7 FPGAs
Speed grade 1 -2 -3
True dual-port Block RAM F, ., [MHz] 388 461 509
Kintex-7 and Virtex-7 FPGAs
Speed grade -1 -2 -3
True dual-port Block RAM F,,,,, [MHZ] 458 544 601

25740

28620

30060
34380

28620

27000

46512
31680

37080
42480

33840

For more information, refer to: UG473, 7 Series FPGAs Memory Resources User Guide
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Loop Analysis

o \With FPGAs we can take advantage of pipeline processing
¢ \Ve need to work to keep the pipeline filled with data
e Depends on the loops of our algorithm and their inter-dependencies

¢ [irst some terminology:

- ‘Interval’ or ‘Initiation Interval’ : gap between start of subsequent
executions of a process

- How often to trains depart the station? (Once per hour)

- ‘Latency’ : delay between start of execution of a process, and output of
results

- How long does it take to get from A to B? (3 hours 17 minutes)

e Main advantage of pipelining: latency and interval are not coupled!

Interval

00000000, 00000000

L © S ——————— T ———— S——

Latency
Zurich HB
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A ———————————————————————— M [ laN O Centrale
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Loop Analysis

¢ | 00ps can have dependencies that impacts scheduling, unrolling, and interval

e Consider this loop executed sequentially time
S ————————————————————————————————

< 3; 1++4)

[ J i [ J
. Add Write Add Write Add Write
al1] ;

- The loop has Latency 3 cycles, Interval 3 cycles

e This loop has no iteration dependence (iteration 1 does not depend on any other iteration)

- |t can be pipelined: loop has Latency 3 cycles, Interval 1 cycle

| . . - Add Write
fOr(l — O; 1 < 3; l++) - Add Write
= a i h
[ ] 4 - Add Write

o [fallof a[1] can be read simultaneously (e.g. it's in FPGA registers not BRAMSs), the loop can be unrolled

Add Write

< 3; 1++4)

for(1 = 0; 1 Add Write
= a[1] ;

Add Write
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Loop Analysis

e Some loops have dependencies (loop-carried dependence)

for(1 = n; 1 > 0; 1—--
O ( 4 . 4 ) - Add Write - Add Write - Add Write
= al[1-1]

e \We can’t pipeline or unroll this loop since the read of iteration 1 depends on the of iteration i-1

¢ [For best performance with parallel architectures, we need to understand and optimise our loops
- Defines how we can distribute loop iterations across different processing units
- Merge loops where possible

- Break dependencies by reordering loops
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Loops Optimizing

e The way we control loops in HLS is partly through how we write the C++ (more on this later) and partly through pragmas

- Directives that the synthesis tool uses to map the code to RTL

orlE = b T - - -
. Add Write Add Write Add Write
= al1] ;
for(1 = 0; 1 < 3; 1++) - Add  Write

#pragma hls pipeline | XTI

= = [l] ; - Add Write

for (l — O; 1 < 3,' l‘|“|‘) Add Write
#pragma hls unroll Add Write
= al[1] ; Add Write

24/1/2020 Presentation - Sioni Summers
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Loop Optimizing

e The way we control loops in HLS is partly through how we write the C++ (more on this later) and partly through pragmas

- Directives that the synthesis tool uses to map the code to RTL
- Recall our vector sum example from the arithmetic section

- The provided implementation was scheduled like this:
Operation\Control Step

ilalloca)
|_write_In9{write)
br _In9(br)
i_1(read)
vold vec sum(const data t 1inl[8], icmp_In9(icmp)
const data t 1n2[8], add_[n9(+)
data t out[8]) { br_Ina(br)
for (int 1 = 0; 1 < 8; ++1) { i_cast(zext)
out[1i] = inl[i] + in2[i];: fm_addr{getelementptr}
in1_load(read)
} in2_addr{getelementptr)

} in2_load(read)
|_write_ln9(write)
add [n11(+)
out_r_addr(getelementptr)

out r addr write In11(write)
br In9(br)
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Loop Optimizing

e The way we control loops in HLS is partly through how we write the C++ (more on this later) and partly through pragmas
- Directives that the synthesis tool uses to map the code to RTL
- Recall our vector sum example from the arithmetic section

- Exercise: now add these pragmas to the code, verify the equivalence with ¢ simulation, run the ¢ synthesis and view schedule

vold vec sum(const data t 1nl[8],
const data t 1in2[8],
data t out[8])
#pragma HLS array partition variable=inl
#pragma HLS array partition variable=in2
#pragma HLS array partition variable=out
#pragma HLS pipeline
for (int 1 = 0; 1 < 8; ++1) {
#pragma HLS unroll
out[i] = 1nl[i] + 1in2([1];

24/1/2020 Presentation - Sioni Summers
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e The way we control loops in HLS is partly through how we write the C++ (more on this later) and partly through pragmas

24/1/2020

- Directives that the synthesis tool uses to map the code to RTL

Loop Optimizing

- Recall our vector sum example from the arithmetic section

- The order and parallelization of operations has completely changed

vold vec sum(const data t 1nl[8],

fpragma
foragma
fpragma
fpragma

const data t 1n2[3],
data t out[8])
HLS array partition variab.
HLS array partition varilab]

le=1n1]l
le=1n?2

HLS array partition varilab]
HLS pipelilne

for (int 1 = 0; i < 8; ++1) {
#pragma HLS unroll
out[1i] = inl[i] + in2[i];

Le=0out

Presentation - Sioni Summers

Operation\Control Step

in1_0_read(read)
in2_0_read(read)

add _In11(+)
in1_1_read(read)
in1_2_read(read)

in1_3 read(read)

in1_4 _read(read)
in1_5_read(read)
in1_6_read(read)
in1_7_read(read)
in2_1_read(read)

add In11_1(+)

in2_2 read(read)

add In11_2(+)

in2_3 read(read)
add_In11_3(+)

in2_4 read(read)

add [n11_4(+)

in2_5 _read(read)

add [n11_5(+)

in2_6 read(read)

add In11_6(+)

in2_7 _read(read)

add In11_7(+)

out 0 write In11(write)
out_1 write In11(write)
out 2 write In11(write)
out 3 write In11(write)
out 4 write In11(write)
out 5 write In11(write)
out 6 write In11(write)
out 7 write In11(write)
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Pragma details

e \Vhat did each pragma do?

24/1/2020

vold vec sum(const data t 1nl([8],

fpragma
fprragma
fpragma
fpragma

const data t 1n2[3],
data t out[8])
HLS array partition variab.
HLS array partition varilab]

HLS array partition varilab]
HLS pipelilne

for (int 1 = 0; i < 8; ++1) {
#pragma HLS unroll
out[1i] = inl[i] + 1in2[i];

e=1nl Partition: make all of the array elements
-e:lni <4— simultaneously readable
L e=0u

<€4— Pjpeline: enable concurrent operation execution

<4 Unroll: execute each loop iteration in parallel
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Pragmas / loops

Try each of the pragmas in isolation, and log some key metrics:

- Look at the schedule viewer for each one and reason what constraints are impacting the behaviour

No pragmas

vold vec sum(const data t 1nl[8],
const data t 1n2[8],

data t out[8]) Unroll
for (int 1 = 0; 1 < 8; ++1i) {
fpragma HLS unroll Array
out[i] = inl[i] + in2[i]:

Partition

Pipeline

All pragmas

Presentation - Sioni Summers
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Partial unrolling

¢ \\e can also partially unroll a loop and partially partition an array
- Useful when fully unrolling a loop will consume more resources than the chip has available

- Example: partially unrolled with “factor = 2” :
time

—_—

j_ -
. Add Write Add Write Add Write
al1] ;

for (1 = 0;

Add Write

Add Write

Read
for(i = 0; i < 8; i++) Read

#pragma hls unroll factor=2 - Gl "ite

= al[1] ;
- I
- 2ad | write
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Loop bounds

e Some of the loop optimizations are only valid when the loop bounds are known at C Synthesis time
- Consider: unrolled loop create N copies of the loop body in hardware — not possible if N is a variable

- Recall our MET example top function: T_met compute met (unsigned short n particles, T pt* pt, T pt*
phi)

- The HLS Synthesis assumes the maximum value of unsigned short iterations for the loop over n_particles

WARNING: [HLS 200-936] Cannot unroll loop 'LOOP X' (loop var.cpp:22) in function 'loop var':

cannot completely unroll a loop with a variable trip count.

e Sometimes this is unavoidable, but sometimes small changes can enable access to loop optimizations

- Tell HLS the real limits: = #pragma HLS loop tripcount min=<int> max=<int> avg=<int>

- Change a variable iteration loop to a fixed size one
- Can then apply any unrolling, pipelining

- May need to handle edge cases e.g. with conditional execution if out of loop bounds
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Merging loops

e Code that seems well organized and natural in regular C++ for CPU may be suboptimal for HLS: merged loops

- Example from HLS documentation

void top(al[4], bl4], cl4], d[41){ °® Left: HLS will execute the full Add
loop then the full Sub loop

Add:
for (i=3; i>=0; i++) { - Plus a ‘control’ cycle to enter and
1f(d[1]) exit each loop
ali] = bl[i] + c[1];
} - Latency will be 11 cycles
Sub
for (1=3; 1>=0; i++) {
if(!d[i]) . .
afd] = Bl - efi : ® Right: HLS will execute the merged
} loop
} - Latency will be 6 cycles

24/1/2020 Presentation - Sioni Summers

volid top(al4d],

AddOrSub:
for (1=3;
1f(d[1]
ali]
else
alil]

1>=0;

)

bl1]

1++) {

+ c[I];
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Loops Exercise: faster MET

. Improve the performance of the MET computation from the first session
- Use all of the loop analysis and optimization strategies from this section
- Reorganize the code, use pragmas
. achieve the lowest latency for the MET computation
- Gonstraints: the resource usage must be less than 100% of the Arty 100 after C Synthesis individually for all resource types

- The MET numerical result must satisfy the same limits: 10 GeV absolute and 2% relative maximum difference vs the floating point

Worst Mean
Error Error

BRAM Latency Interval

Original ? ? ? ? ? ? ? ?

Optimized ? ? ? ? ? ? ? ?

Presentation - Sioni Summers

56



