EI|A§F9R2|?§ 'SQ‘.?SL.E.E NZA Centro Nazionale di Ricerca in HPC,

Big Data and Quantum Computing

Fondazione
Finanziato /3 Ministero - -
dall'Unione europea Y] dell’'Universita i [taliadomani

NextGenerationEU & e della Ricerca

VHDL by Examples

Andrea Triossi — University of Padova — INFN Padova

Hardware description

* Drawing a diagram of the hardware design (schematics)

* Textual description

* Programming language that includes explicitly the notion of time
e Concurrent language

* Implement the Register Transfer Level (RTL) of a circuit (not dependent on
hardware technology but only dataflow between registers and logical
operations)

* Most widely used

* Verilog
* VHDL[V (Very High Speed Integrated Circuit) Hardware Description Language]

VHDL basic structures

e entity: it is a black box where only the interface signals (ports) are
described

. . it describes the content of the box in terms of
functionalities and/or structures of the circuits

entity And2 is architecture ex? of And2 1is
port (x,y: in BIT; z: out BIT); begin
end entity And2; z <= 'l' when x & y = "11" else

vov;
end architecture ex?;
architecture exl of And2 1is
begin
z <= x and vy;
end architecture exl;

VHDL instantiation

* Instead of directly describe the functionality, a more structured
(hierarchical) description can be given

e Sub-blocks instantiation

entity comb function is

port (a, b, ¢ : in BIT; z: out BIT);
end entity comb function;
architecture expression of comb function 1is
begin

z <= (not a and b) or (a and c);
end architecture expression;

VHDL instantiation

* Instead of directly describe the functionality, a more structured

(hierarchical) description can be given
e Sub-blocks instantiation

entity comb function is
port (a, b, c in BIT; =z:

end entity comb function;

architecture netlist of comb function is
signal p, g, r BIT;

begin

out BIT);

gl: entity WORK.Notl (exl) port map (a, p):

g2: entity WORK.And2 (exl) port map (p, b, qg);
g3: entity WORK.And2 (exl) port map (a, c, r);
g4: entity WORK.Or2 (exl) port map (g, r, z);

end architecture

netlist;

entity Or2 is

port (x, vy in BIT; =z:
end entity Or2;
architecture ex1 of Or2 1is
begin

z <= X Or y;
end architecture exl;
entity Notl 1is

port (x in BIT; z:
end entity Notl;
architecture exl1 of Notl 1is
begin

z <= not x;
end architecture exl;

out BIT);

out BIT);

Standard logic

‘U’ Uninitialized

‘X’ Forcing (1.e. strong) unknown
‘0’ Forcing O

‘1’ Forcing 1

‘Z” High impedance

‘W Weak unknown

‘L Weak 0
‘H” Weak 1
‘=" Don’t care
U X 0 1 Z \u L H -
U U U U U U U U U U
X U X X X X X X X X
0 U X 0 X 0 0 0 0 X
1 U X X 1 | | | 1 X
Z U X 0 1 Z "\ L H X
W U X 0 | W \\ W \W% X
L U X 0 1 L \\ L \W% X
H U X 0 1 H "\ W H X
- U X X X X X X X X

ARTY A7/

Artix-7 FPGA
 XC7A100TCSG324-1
e 15,850 slices
* 4,860 Kbits BRAM
* 6 CMTs
240 DSP

ARTY A7 board
e 1
* 4 Switches - : :
4 Buttons g . ; - = AVNET
1 Reset Button T g : aa il anmalit
4 LEDs
.« 4

Reference manual
Constraints file
Schematics

https://digilent.com/reference/programmable-logic/arty-a7/reference-manual
https://github.com/Digilent/digilent-xdc/blob/master/Arty-A7-100-Master.xdc
https://digilent.com/reference/_media/programmable-logic/arty-a7/arty-a7-e2-sch.pdf

LAB COMBINATORIAL

Adder

* Elementary cell for adding two bits (binary digit)
e Extension to two n-bits numbers

S;=(ABC+ABC+ABC+ABC),
Civ1=(ABC+ABC+ABC+ABC),

Si=(AB+AB).Ci+(AB+AB).C;=(A®B); D
Ciii=(AB+AC+BC);

b O B O = O = O
- »r O O +» » O O
R Bk = =, O O O O
R O O - O —» +» O
R = = O »r O O O

Adder

* Elementary cell for adding two bits (binary digit)
e Extension to two n-bits numbers

A,‘ B,‘

S;=(ABC+ABC+ABC+ABC),

J
E% Cis1=(ABC+ABC+ABC+ABC)
% C;

Si=(AB+AB)C;+(AB+AB)C;=(A®B); ®C
Cis1=(AB+AC+BC);

#\Qh

Adder

* Elementary cell for adding two bits (binary digit)
* Extension to two n-bits numbers

%\Q#\

LAB RTL ADDER

Numbers Bit Vectors

Type conversions

to_integer(S) std_logic_vector(S)

to_signed(l,S'length)

V
std_logic_vector

to_unsigned(l,U'length) unsigned(V)

to_integer(U) std_logic_vector(U)

Conversion Function Type Cast

Adder

e Adder in VHDL (with unsigned arithmetic)

entity NBitAdder is architecture unsigned of NBitAdder is
generic (n: NATURAL :=4); signal result : unsigned(n downto 0);
port (A, B: in std_logic_vector(n-1 downto 0); signal carry : unsigned(n downto 0);
Cin : in std_logic; constant zeros : unsigned(n-1 downto 0) := (others =>'0');
Sum : out std_logic_vector(n-1 downto 0); begin
Cout: out std_logic); carry <= (zeros & Cin);
end entity NBitAdder; result <= ('0' & unsigned(A)) + ('0' & unsigned(B)) + carry;

Sum <= std_logic_vector(result(n-1 downto 0));
Cout <= result(n);
end architecture unsigned;

Adder

e Adder in VHDL (with signed arithmetic)

entity NBitAdder is architecture signed of NBitAdder is
generic (n: NATURAL :=4); signal result : signed(n downto 0);
port (A, B: in std_logic_vector(n-1 downto 0); signal carry : sighed(n downto 0);
Cin : in std_logic; constant zeros : signed(n-1 downto 0) := (others =>'0');
Sum : out std_logic_vector(n-1 downto 0); begin
Cout: out std_logic); carry <= (zeros & Cin);
end entity NBitAdder; result <= (A(n-1) & signed(A)) + (B(n-1) & signed(B)) + carry;

Sum <= std_logic_vector(result(n-1 downto 0));
Cout <= result(n);
end architecture signed;

LAB ARITHMETIC ADDER

Tristate

* It is used for developing bidirectional connections
* A control line is used for putting the output in high-impedance

* Many data buses are usually tristate because they are used to link
devices that can be both source and sink of information

(‘w

A~|>B

R O +—» O
= = O O
R O N N

@]

Tristate

* Tristate in VHDL

architecture Primitive of tri_state_buffer_top is
begin
OBUFT _inst : OBUFT
generic map |
DRIVE => 12,
IOSTANDARD => "DEFAULT",
SLEW => "SLOW")
port map (
O=>0, --Buffer output (connect directly to top-level port)
| =>1, --Bufferinput
T=>T --3-state enable input
);

end Primitive;

entity tri_state_buffer _top is
Port (I :in STD_LOGIC;
T :in STD_LOGIC;
O :outSTD LOGIC;

end tri_state_buffer_top;

architecture Behavioral of tri_state buffer_top is
begin

O <=I|when (T ='0') else 'Z';
end Behavioral;

LAB TRISTATE

Multiplexer

* A Mux selects one signal among 2™ (D;) thanks to n address lines (S5)

A Demux applies the inverse operation

D—\ /—D
Ds — LD,
Dy LD
Dy —) D,
Dy | ! Y L D,
Dy — LD
D, L D,

Dy */r j\ Dy
." 5‘[] SQ !
(

Multiplexer

* 4 to 1 multiplexer in VHDL

entity mux is
port (a, b, ¢, d: in std_logic;
s:in std_logic_vector(1 downto 0);
y: out std_logic);

end mux;

architecture Behavioural of mux is
begin
y <= a when s ="00" else
b whens="01" else
c when s ="10" else
d whens="11" else
NG
end architecture Behavioural;

LAB MUX

Exercise

* Write a n-bit 1 to 4 demultiplexer of an n-bit input

n-bit

n-bit

Demux
1to4

Exercise

* Write a n-bit 1 to 4 demultiplexer of an n-bit input
* Instantiate it in synthesizable top module (n=4) and simulate it

Demux 1to 4

) Demux
4-bit 1to 4 .

4-bit

Exercise

* Write a n-bit 1 to 4 demultiplexer of an n-bit input
* Instantiate it in synthesizable top module (n=4) and simulate it

* Deploy it on Arty A7 board = 4 Buttons as input
= 2 Switches as select
= 16 Leds as output

Demux 1to 4 A-bit

Demux

I
1to4

4-bit

./

EX DEMUX

Memory elements

* If both inputs are at 1, the circuit keep memory of the previous state

\ o A B Q; Q4
0O O 1 1
1 O 1 0
0O 1 0 1
Qs —
B 1 1 X X

e Latch

Memory elements

* Flip-flop set-reset (S-R)
* A synchronization input t is added
* If tis not present the output doesn’t change

5" 1 —=nt1
g Sn Rn Qn+ Q

| 0o o o0 o nt1_(QSR+SR) =(S+QR)
| 1 0 1 0 SR=0

G”H 0 1 0 1
R 1 1

Memory elements

* Flip-flop J-K

* It removes the forbidden state

n+1=(Q]_E+]E+6]K)n=

* Flip-flop D
* Only one input

Qn+1 = DN

(QK+Q

Memory elements

* D Flip-flop in VHDL

entity RisingEdge_DFlipFlop is
port(
Q : out std_logic;
Clk :in std_logic;
D :in std_logic
);
end RisingEdge DFlipFlop;

architecture Behavioral of RisingEdge DFlipFlop is
begin
process(Clk)
begin
if(rising_edge(Clk)) then
Q<=D;
end if;
end process;
end Behavioral;

VHDL sequential

e Usually, all the assignments and instantiations in VHDL are concurrent

* Sequential statements can be used in sub-program (procedure and function) or processes

architecture Sequential of

priority is

begin _ architecture Sequential?2 of
process (@) 1is priority is
begln begin
2 — | |
lf<i(§llz 1' then process (a) is
entity priority is Y le - :1'. begin
port (a: in std logic vector (3 downto 0); va % - " ‘ valid <= '1"';
y: out std logic vector(l downto 0); elsif a(2) = 'l' then if a(3) = '1l' then
valid: out std logic); y <= "10"; y <= "11";
end entity priority; valid <= '1'; elsif a(2) = '1l' then
elsif a(l) = '1l' then y <= "lO",'
arcyitecture Concurrent of priority is y <= "01"; elsif a(l) = '1' then
begln valid <= 'l',’ v <= "Ol",‘
y <= "11" when a(3) = 'l' else elsif a(0) = '1' then elsif a(0) = '1l' then
"10" when a(2) = '1l' else <= "QQ":
Yy H v <= "QQ":
"01" when a(l) = 'l' else : - . ’
valid <= '1"; else
"00" when a(0) '1' else 1
uoou; eélse Valld <= ‘O‘;
valid <= '1' when a(0) = '1' or a(l) = '1° y <= "00 au y <= "00";
or a(2) = 'l' or a(3) = '1l' else vallé <= '0'; end if;
'0'; end if; end process;

end architecture Concurrent;

end process;

end architecture Sequential;

end architecture Sequential?2;

VHDL sequential

e Usually, all the assignments and instantiations in VHDL are concurrent

* Sequential statements can be used in sub-program (procedure and function) or processes

Process

Process l Process

‘ l Process
Process l

VHDL sequential

e Usually, all the assignments and instantiations in VHDL are concurrent

* Sequential statements can be used in sub-program (procedure and function) or processes

Process

Process l Process

| Ik

Process
“\\\\\\\\\S Process k////////;y l

[

LAB MEMORY ELEMENTS

Sequential circuits

e Usually, memory elements are controlled by logic functions

combinatorial
logic

sequential
logic

* Examples are counters, shift registers...

Counter

n_l_

o

=

nH_D

< *

. SRS

A

3 < @ I
e m &2
4 It < o A ¢
© | =
S | | | | B
o0 — — — N
‘»n + + + + W
Qv & I~ e < L
A < A O QA <«

Counter

* Counter in VHDL

architecture Behavioral of Counter is
signal count : unsigned(3 downto 0) :=(others =>'0');
begin
process(Clk, count)
begin
if(rising_edge(Clk)) then
count <= count + 1;
end if;
end process;
O <= std_logic_vector(count);
end Behavioral;

Shift register

* It is used to shift a signal
* Its design can be obtained by the sequential table

* Without feedback can be used to access in parallel to a serial data or
to serialize a parallel data

* Each cell can have a multiplexer to choose if shifting the bit or loading
a new bit

D = D QF----—p QX

Shift register

e Shift register in VHDL

sreg : process(clk, rst)
begin
if (rst="1") then
r data <= (others=>(others=>'0"));
elsif (rising_edge(clk)) then
r_data(0) <= i_data;
foriin1tor_data'length-1 loop
r_data(i) <= r_data(i-1);
end loop;
end if;
end process;

T'BASE is the base type of the type T

T'LEFT is the leftmost walue of type T. (Largest if downto)
T'RIGHT is the rightmost value of type T. (Smallest if downto)
T'HIGH is the highest wvalue of type T.

T"LOW is the lowest value of type T.

T'ASCENDING 1is boolean true if range of T defined with te

L] -
Att rl b uteS T'IMAGE(X) is a string representation of X that is of type T.
T'VALUE(X) is a value of type T converted from the string X.

T'POS(X) is the integer position of X in the discrete type T.

T'VAL(X) is the value of discrete type T at integer position X.
T'sUCC(x) is the wvalue of discrete type T that is the successor of X.
T'PRED(X) is the value of discrete type T that is the predecessor of X.
T'LEFTOF(X) is the wvalue of discrete type T that is left of X.

T'RIGHTOFEK! is the value of discrete type T that is right of X.

A'LEFT is the leftmost subscript of array A or constrained array type.
A'LEFT(N) is the leftmost subscript of dimension N of array A.

A'RIGHT is the rightmost subscript of array A or constrained array type.
A'RIGHT(M) is the rightmost subscript of dimension N of array A.

A'HIGH is the highest subscript of array A or constrained array type.
A'HIGH(N) is the highest subscript of dimension N of array A.

ATLOW is the lowest subscript of array A or constrained array type.
A'LOW(N) is the lowest subscript of dimension N of array A.

A"RANGE is the range A'LEFT to A'RIGHT or A'LEFT downte A'RIGHT

A'RANGE(N) is the range of dimension N of A.

A'REVERSE_RANGE is the range of A with te and downte reversed.
A'REVERSE_RANGE(MN) is the REVERSE_RANGE of dimension N of array A.
A'LENGTH is the integer value of the number of elements in array A.
A'LENGTH(N) is the number of elements of dimension N of array A.
A'ASCENDING 1is boolean true if range of A defined with te

A'ASCENDING(N) is boolean true if dimension N of array A defined with te
S'DELAYED(t) is the signal value of & at time now - £

S'STABLE is true if no event is occurring on signal S.
S'STABLE(t) dis true if no even has occurred on signal & for t units of time.
S'QUIET is true if signal S is quiet. (no event this simulation cycle)

STQUIET(L) is true if signal S has been guiet for t units of time.
S'TRANSACTION is a bit signal, the inverse of previous value each cycle 5 is active.
S"EVENT is true if signal S has had an event this simulation cycle.
S'ACTIVE is true if signal 5 is active during current simulation cycle.
S'LAST_EVENT is the time since the last event on signal S.

S'LAST ACTIVE is the time since signal S was last active.

S'LAST_WALUE is the previous wvalue of signal S.

S'DRIVING is false only if the current driver of S is a null transaction.
S'DRIVING VALUE 1is the current driving value of signal 5.

E'SIMPLE_MAME is a string containing the name of entity E.

E'INSTANCE_MNAME 1is a string containing the design hierarchy including E.
E'PATH_NAME is a string containing the design hierarchy of E to design root.

LAB SEQUENTIAL CIRCUITS

Extended counter

* Goal: make a counter able to increase by one/three or decrease
by one/three depending on a control

* Use the leds as counter display
* Use the switches for choosing +1/+3/-1/-3 mode

* Simulate
* Implement

EX COUNTER

Memory

* |t can be seen as an array of FF

* A decoder is used for addressing the data raw
* A tristate allows read/write operation
* Memory size = data width x 22ddress width

* Random Access Memory (RAM) —[

ol odieyd <

R/W
* If Read Only is called ROM
* It can contain a truth table -> It implements any
combinatorial function | |
* Synchronous RAM can be easily synthetized Am-1 Ao
in FPGA

Memory

* RAM in VHDL
architecture Behavioral of ram_ent is process (clk)

type ram_type is array (31 downto 0) begin

of std_logic_vector (3 downto 0); if rising_edge(Clk) then

signal RAM : ram_type; if (we ='1") then

signal read_a : std_logic_vector(4 downto 0); RAM(to_integer(unsigned(a))) <= di;
begin end if;

read_a <= a;
end if;

end process;
do <= RAM(to_integer(unsigned(read_a)));
end Behavioral;

LAB RAM

State machine

* A general schema for functions that control sequential logic take into
account external signals C and produce control signals P
* Mealey state machine: P is function of Cand Q
* Moore state machine: P is only function of Q

* Moore outputs are synchronous

combinatorial
logic

sequential
logic Q

VHDL state machine

* There are several ways of encoding a state machine
* One process (clocked process with a case statement)

» Two processes (clocked process for changing state, combinatorial process for
setting outputs)

* Three processes (clocked process for changing state, combinatorial process for
next state choice, combinatorial process for setting outputs)

* Other combinations of processes are also allowed
e Just a coding style

VHDL state machine

* One process state machine

process(Clk) is case State is
begin when SO => if ConditionO then
if rising_edge(Clk) then State <= S1;
if Rst = ‘1' then Dout <= Valuel;
State <= S0; end if;
Dout <= ValueO; when S1 => if Conditionl then
else State <= SO0;
Dout <= ValueO;
end if;
when others => Dout <= ValueO;
State <= S0O;
end case;
end if;
end if;

end process;

VHDL state machine

* Two processes state machine

process(Clk) is
begin
if rising_edge(Clk) then
if Rst ='1' then
State <= SO;
else
State <= NextState;
end if;
end if;
end process;

process(State, Condition0, Condition1) is
begin
NextState <= State;

case State is
when SO => Dout <= ValueO;
if ConditionO then
NextState <= S1;
end if;
when S1 => Dout <= Valuel;
if Condition1 then
NextState <= SO;
end if;
when others => Dout <= ValueO;
NextState <= SO;
end case;
end if;
end if;
end process;

LAB FSM

FSM detecting sequences

* Design an FSM able to detect both the switching on of the four
switches from left to right and from right to left

LI
* Implement HHHH HHHH
‘' -

<

EX FSM

	Slide 1: VHDL by Examples Andrea Triossi – University of Padova – INFN Padova
	Slide 2: Hardware description
	Slide 3: VHDL basic structures
	Slide 4: VHDL instantiation
	Slide 5: VHDL instantiation
	Slide 6: Standard logic
	Slide 7: ARTY A7
	Slide 8: LAB COMBINATORIAL
	Slide 9: Adder
	Slide 10: Adder
	Slide 11: Adder
	Slide 12: LAB RTL ADDER
	Slide 13: Type conversions
	Slide 17: Adder
	Slide 18: Adder
	Slide 19: LAB ARITHMETIC ADDER
	Slide 20: Tristate
	Slide 21: Tristate
	Slide 22: LAB TRISTATE
	Slide 23: Multiplexer
	Slide 24: Multiplexer
	Slide 25: LAB MUX
	Slide 26: Exercise
	Slide 28: Exercise
	Slide 29: Exercise
	Slide 30: EX DEMUX
	Slide 31: Memory elements
	Slide 32: Memory elements
	Slide 33: Memory elements
	Slide 34: Memory elements
	Slide 35: VHDL sequential
	Slide 36: VHDL sequential
	Slide 37: VHDL sequential
	Slide 38: LAB MEMORY ELEMENTS
	Slide 39: Sequential circuits
	Slide 40: Counter
	Slide 41: Counter
	Slide 42: Shift register
	Slide 43: Shift register
	Slide 44: Attributes
	Slide 45: LAB SEQUENTIAL CIRCUITS
	Slide 46: Extended counter
	Slide 47: EX COUNTER
	Slide 48: Memory
	Slide 49: Memory
	Slide 50: LAB RAM
	Slide 51: State machine
	Slide 52: VHDL state machine
	Slide 53: VHDL state machine
	Slide 54: VHDL state machine
	Slide 55: LAB FSM
	Slide 57: FSM detecting sequences
	Slide 58: EX FSM

