
Verilog
Open Source and FPGA
Zynq, Pynq and Alveo

Mirko Mariotti

June 25, 2025

Mirko Mariotti June 25, 2025 June 25, 2025 1 / 33

Contents

1 Verilog
Modules
Blocks
Data
Assignments and Operators
Flow control
Live examples

2 Open Source and FPGA
Open Source tools for simulation
Open Source tools for synthesis and implementation

3 Zynq, Pynq and Alveo
Zynq
Zynq VHDL demo
Pynq
Alveo

Mirko Mariotti June 25, 2025 June 25, 2025 2 / 33

Modules

Verilog modules are blocks of code (circuit) that can be reused within
other blocks (similar to functions in computer programming
languages)

The keyword “module” starts a block that ends with “endmodule”.

They could have input and output parameters.

module MyModule ([parameters]);

inputs ...

outputs ...

internal variables ...

...

Module Code ...

endmodule

Mirko Mariotti June 25, 2025 June 25, 2025 3 / 33

Modules

Verilog modules are blocks of code (circuit) that can be reused within
other blocks (similar to functions in computer programming
languages)

The keyword “module” starts a block that ends with “endmodule”.

They could have input and output parameters.

module MyModule ([parameters]);

inputs ...

outputs ...

internal variables ...

...

Module Code ...

endmodule

Mirko Mariotti June 25, 2025 June 25, 2025 3 / 33

Modules

Verilog modules are blocks of code (circuit) that can be reused within
other blocks (similar to functions in computer programming
languages)

The keyword “module” starts a block that ends with “endmodule”.

They could have input and output parameters.

module MyModule ([parameters]);

inputs ...

outputs ...

internal variables ...

...

Module Code ...

endmodule

Mirko Mariotti June 25, 2025 June 25, 2025 3 / 33

Main Module

A specific module is tagged as the main module. (similar to the main
on a programming language)

It is the “program” entry point.

Usually it has inputs and outputs connected to FPGA physical IO.

Mirko Mariotti June 25, 2025 June 25, 2025 4 / 33

Main Module

A specific module is tagged as the main module. (similar to the main
on a programming language)

It is the “program” entry point.

Usually it has inputs and outputs connected to FPGA physical IO.

Mirko Mariotti June 25, 2025 June 25, 2025 4 / 33

Main Module

A specific module is tagged as the main module. (similar to the main
on a programming language)

It is the “program” entry point.

Usually it has inputs and outputs connected to FPGA physical IO.

Mirko Mariotti June 25, 2025 June 25, 2025 4 / 33

Blocks

The verilog block are defined with begin - end.

There are two types of blocks:

Initial block
Is executed when the simulation start or as initial value.

Always block
It is always executed and is associated to a list that specify when execute
the block

always @ (a or b or sel)

begin

...

end

Mirko Mariotti June 25, 2025 June 25, 2025 5 / 33

Blocks

The verilog block are defined with begin - end.

There are two types of blocks:

Initial block
Is executed when the simulation start or as initial value.

Always block
It is always executed and is associated to a list that specify when execute
the block

always @ (a or b or sel)

begin

...

end

Mirko Mariotti June 25, 2025 June 25, 2025 5 / 33

Blocks

The verilog block are defined with begin - end.

There are two types of blocks:

Initial block
Is executed when the simulation start or as initial value.

Always block
It is always executed and is associated to a list that specify when execute
the block

always @ (a or b or sel)

begin

...

end

Mirko Mariotti June 25, 2025 June 25, 2025 5 / 33

Blocks

The verilog block are defined with begin - end.

There are two types of blocks:

Initial block
Is executed when the simulation start or as initial value.

Always block
It is always executed and is associated to a list that specify when execute
the block

always @ (a or b or sel)

begin

...

end

Mirko Mariotti June 25, 2025 June 25, 2025 5 / 33

Data
Wire e Reg

Wire:
They are used to connect different elements. They can be thought as
physical wires. They can be read or assigned but they does not store
information. Indeed they need to be continuously driven from an
assignment or a module port.

Reg:
Store a value in Verilog. The value is kept until assigned again (similar to
a variable)

Mirko Mariotti June 25, 2025 June 25, 2025 6 / 33

Numbers

Verilog allows you to specify numbers with size and base:
<size>’<base><value>

Examples:

12 // decimal (default, base 10)

8’h5F // 8-bit hexadecimal (0x5F)

6’b11 0010 // 6-bit binary (0b110010)

’o576 // octal (base 8), size omitted

The underscore () can be used as a digit separator for readability and is
ignored by the compiler.

Mirko Mariotti June 25, 2025 June 25, 2025 7 / 33

Scalars and Vectors

Variables in Verilog can be either scalars (single bit) or vectors (multiple
bits).

Examples:

reg out;

reg [7:0] databus;

wire [1:0] select;

wire enabled;

Vectors are defined using the syntax: [MSB:LSB]. For example, [7:0]
defines an 8-bit bus from bit 7 (most significant) to bit 0 (least
significant).

Mirko Mariotti June 25, 2025 June 25, 2025 8 / 33

Assignment

(reg) Blocking assignment:
A = 3;
The expression is evaluated in the execution flux and the variable assigned
immediately.

(reg) NON blocking assigment:
A <= A + 1;
The expression is evaluated in the execution flux and the result stored in a
temporary variable and assigned on the next step

(wire) Continuous assignment:
assign A = in1 & in2;
used to model combinatorial logic and rename signals.

Mirko Mariotti June 25, 2025 June 25, 2025 9 / 33

Assignment

(reg) Blocking assignment:
A = 3;
The expression is evaluated in the execution flux and the variable assigned
immediately.

(reg) NON blocking assigment:
A <= A + 1;
The expression is evaluated in the execution flux and the result stored in a
temporary variable and assigned on the next step

(wire) Continuous assignment:
assign A = in1 & in2;
used to model combinatorial logic and rename signals.

Mirko Mariotti June 25, 2025 June 25, 2025 9 / 33

Assignment

(reg) Blocking assignment:
A = 3;
The expression is evaluated in the execution flux and the variable assigned
immediately.

(reg) NON blocking assigment:
A <= A + 1;
The expression is evaluated in the execution flux and the result stored in a
temporary variable and assigned on the next step

(wire) Continuous assignment:
assign A = in1 & in2;
used to model combinatorial logic and rename signals.

Mirko Mariotti June 25, 2025 June 25, 2025 9 / 33

Operators

Mirko Mariotti June 25, 2025 June 25, 2025 10 / 33

Flow control
If statement in Verilog

The if statement in Verilog is used to make decisions based on conditions,
similar to other programming languages.

Syntax:

if (condition) begin

// statements if condition is true

end else begin

// statements if condition is false

end

The else part is optional.

Used inside always or initial blocks.

Conditions are typically expressions involving signals or variables.

Mirko Mariotti June 25, 2025 June 25, 2025 11 / 33

Flow control
case statement in Verilog

The case statement in Verilog is used for multi-way branching, similar to
switch in C/C++.

Syntax:

case (expression)

value1: statement1;

value2: statement2;

default: statement_default;

endcase

Each value is compared to the expression; the matching branch is
executed.

The default branch is optional and is executed if no values match.

Used inside always or initial blocks.

Mirko Mariotti June 25, 2025 June 25, 2025 12 / 33

Flow control
for

The for loop in Verilog is used to repeat a block of code a fixed number
of times, similar to C/C++. It is used in initial or always blocks,
especially for initializing arrays or generating repetitive hardware structures.

Syntax: for (initialization; condition; increment) begin

... end

integer i;

reg [7:0] array [0:7];

initial begin

for (i = 0; i < 8; i = i + 1) begin

array[i] = 0;

end

end

Note: The increment must be written as i = i + 1 (no ++

operator).

The for loop is unrolled during synthesis; it does not create a runtime
loop in hardware.

Mirko Mariotti June 25, 2025 June 25, 2025 13 / 33

Live examples
General informations 1

You can use either the local installation of Vivado or the cloud
infrastructure.

Clone the day3 repository from GitHub

git clone https://github.com/FPGA-course-2025/day3

or, if you have already cloned the course repository

Pull the latest changes

git pull (from inside the day3 folder)

Mirko Mariotti June 25, 2025 June 25, 2025 14 / 33

Live examples
General informations 2

Inside the verilog directory in day3 you will find the examples

A single example is one or more files with the extension .v or .vhdl and it’s
contained in a folder with the example name.

You can run the example with Vivado in the following way:

create a new project

add all the files in the project as design sources

add the correct constrains file for the board you are using (also in the
day3 verilog directory)

create the bitstream, it should be generated without errors

Mirko Mariotti June 25, 2025 June 25, 2025 15 / 33

Live examples
General informations 3: boards recap

Basys3:

Part number: xc7a35tcpg236-1

Constraints file: basys3.xdc

Arty 7:

Constraints file: arty7.xdc

Mirko Mariotti June 25, 2025 June 25, 2025 16 / 33

Counter
day3/verilog/counter

module counter(

input clk ,

input [3:0] sw,

input [3:0] btn ,

output reg [3:0] led

);

reg [31:0] counter;

always @ (posedge clk) begin

led [0] <= counter [23];

led [1] <= counter [24];

led [2] <= counter [25];

led [3] <= counter [26];

counter <= counter + 1;

end

endmodule

Let’s try some improvements:

Make the counter running faster (or slower)

Add a reset button (with a switch or a button)

Mirko Mariotti June 25, 2025 June 25, 2025 17 / 33

Led on and off
day3/verilog/ledonoff

module ledonoff(

input clk ,

input [3:0] sw,

input [3:0] btn ,

output reg [3:0] led

);

reg oldbtn0;

reg ledState;

always @ (posedge clk) begin

oldbtn0 <= btn [0];

if (btn [0] && !oldbtn0) begin

ledState <= ~ledState;

end

led [0] <= ledState;

end

endmodule

It seems that sometimes the led does not turn off or on. What could be
the problem?

Mirko Mariotti June 25, 2025 June 25, 2025 18 / 33

Module instantiation
day3/verilog/modulev

module modulev(

input clk ,

input [3:0] sw,

input [3:0] btn ,

output reg [3:0] led

);

wire [3:0] pattern;

patternMux mux (

.sel(sw[0]),

.pattern(pattern)

);

always @ (posedge clk) begin

led <= pattern;

end

endmodule

module patternMux(

input sel ,

output [3:0] pattern

);

assign pattern = sel ? 4’b1010 : 4’b0101;

endmodule

Mirko Mariotti June 25, 2025 June 25, 2025 19 / 33

VHDL module instantiation
day3/verilog/modulevhdl

module modulev(

input clk ,

input [3:0] sw,

input [3:0] btn ,

output reg [3:0] led

);

wire [3:0] pattern;

patternMux mux (

.sel(sw[0]),

.pattern(pattern)

);

always @ (posedge clk) begin

led <= pattern;

end

endmodule

library ieee;

use ieee.std_logic_1164.all;

entity patternMux is

port (

sel : in std_logic;

pattern: out std_logic_vector (3 downto 0)

);

end entity patternMux;

architecture rtl of patternMux is

begin

pattern <= "0101" when sel = ’0’ else

"1010" when sel = ’1’ else

"0000"; -- Default case if needed

end architecture rtl;

Mirko Mariotti June 25, 2025 June 25, 2025 20 / 33

Open Source tools for simulation

iverilog: a free Verilog simulator, it can be used to simulate the code
and check the results.

gtkwave: a free waveform viewer, it can be used to visualize the
results of the simulation.

ghdl: a free VHDL simulator, it can be used to simulate the VHDL
code and check the results.

The day3/verilogExamples directory contains a set of Jupyter notebooks
that can be used to run the examples with the open source tools. Similarly,

the day3/vhdlExamples directory contains a set of Jupyter notebooks that
can be used to run the VHDL examples with the open source tools.

Mirko Mariotti June 25, 2025 June 25, 2025 21 / 33

Open Source tools for synthesis and implementation

While the major FPGA vendors provide their own synthesis and
implementation tools, there are also open source alternatives that can be
used to synthesize and implement designs for FPGAs. These tools are
particularly useful for educational purposes or for those who prefer to work
with open source software.

Related to these tools, there is a growing community of open source FPGA
tools that provide complete flows. Is some cases, these tools are better
than the vendor tools, especially for smaller FPGAs or for specific
applications.

Also the open hardware community is growing, with many projects that
provide open source designs for FPGAs.

Mirko Mariotti June 25, 2025 June 25, 2025 22 / 33

Open Source tools for synthesis and implementation

Yosys: a free synthesis tool, it can be used to synthesize the Verilog
code and generate a netlist.

nextpnr: a free place and route tool, it can be used to place and
route the netlist generated by Yosys.

icepack: a free tool to generate the bitstream for Lattice iCE40
FPGAs.

A common way to install these tools is to use the oss-cad-suite project,
which provides a comprehensive set of open source tools for FPGA design.

The day3/ossExamples directory contains a set of Jupyter notebooks that
can be used to run the examples with the open source tools and some
small FPGAs.

Mirko Mariotti June 25, 2025 June 25, 2025 23 / 33

https://github.com/YosysHQ/oss-cad-suite-build/

Zynq

Zynq is a family of FPGAs that combines a dual-core ARM Cortex-A9
processor with an FPGA fabric. This allows for a high degree of
integration and flexibility, as the processor can be used to run software
applications while the FPGA fabric can be used to implement custom
hardware accelerators or other logic.

Mirko Mariotti June 25, 2025 June 25, 2025 24 / 33

PS-PL

The Zynq architecture is divided into two main parts: the Processing
System (PS) and the Programmable Logic (PL).

The PS contains the ARM processor, memory controllers, and other
peripherals, while the PL contains the FPGA fabric.

The PS can run a standard operating system, such as Linux, or a real-time
operating system like FreeRTOS.

The PS and PL can communicate with each other through a set of
interfaces, such as AXI, which allows for high-speed data transfer between
the two parts.

Mirko Mariotti June 25, 2025 June 25, 2025 25 / 33

PS-PL

Mirko Mariotti June 25, 2025 June 25, 2025 26 / 33

Zynq VHDL demo

Let’s try to run a simple VHDL example on the Zynq board.

Mirko Mariotti June 25, 2025 June 25, 2025 27 / 33

Pynq

Pynq is a project that provides a Python-based framework for developing
applications on Zynq-based FPGAs.

It allows users to write Python code that can interact with the FPGA
fabric, enabling the development of hardware accelerators and other
custom logic directly usable in Python.

Pynq also provides a set of pre-built overlays, which are pre-configured
FPGA designs that can be used to accelerate specific applications, such as
image processing or machine learning.

Mirko Mariotti June 25, 2025 June 25, 2025 28 / 33

Pynq

With this kind of technology, FPGAs are not anymore just a hardware
platform, but they can be used as computing accelerators in a high-level
programming language like Python.

With the term co-design, we mean the process of developing both
hardware and software components together, taking advantage of the
strengths of both domains.

In the pynq website, (https://www.pynq.io/) you can find a lot of
examples and tutorials to get started with Pynq and Zynq-based FPGAs.

Mirko Mariotti June 25, 2025 June 25, 2025 29 / 33

https://www.pynq.io/
https://www.pynq.io/

Pynq

Pynq is also available on the cloud environment, let’s see an example of
how to use it.

in the day3/pynqExamples directory you can find the Jupyter notebook
and an example of co-design in c++ as well.

Mirko Mariotti June 25, 2025 June 25, 2025 30 / 33

Alveo

Alveo is a family of high-performance FPGAs designed for data center
applications.

Mirko Mariotti June 25, 2025 June 25, 2025 31 / 33

Alveo U55C

Feature Xilinx Alveo U55C Digilent Arty A7
FPGA Family Xilinx Virtex UltraScale+ HBM Xilinx Artix-7

FPGA Model XCU55CHBVAU58P XC7A35T or XC7A100T

Process Technology 16nm FinFET 28nm planar CMOS

Logic Resources (LUTs) ˜1.3 million 33,650 (A7-35T) / 101,440 (A7-
100T)

Block RAM 70.6 Mb + 8 GB HBM 1.8 Mb

DSP Slices 3,744 90 (A7-35T) / 240 (A7-100T)

HBM (High Bandwidth Memory) 8 GB HBM2 None

Memory Bandwidth Up to 460 GB/s Limited to external SRAM/DDR

Connectivity PCIe Gen4 x16 USB-UART, PMOD, Arduino headers

Power Consumption High (server-grade, >75W typical) Low (˜1–5W)

Form Factor Full-height, full-length PCIe card Standalone board (Arduino-style)

Typical Applications Data center, HPC, AI, hardware ac-
celeration

Education, prototyping, hobbyist
projects

Approx. Price (2025) >€10,000 ˜€150–250

Software Support Vitis, Vivado, XRT, OpenCL Vivado, Vitis (for optional MicroB-
laze)

Host Requirements Server/workstation with PCIe x16 slot None (USB/UART for debugging)

Availability Specialized enterprise resellers Widely available online

Table: Comparison between Xilinx Alveo U55C and Digilent Arty A7

Mirko Mariotti June 25, 2025 June 25, 2025 32 / 33

HLS

Board like the Alveo U55C are used in data centers, so FPGAs are not
only used for prototyping or for electronics projects, but start to be used in
high-performance computing and in data centers.

Concurrently to this shift in the use of FPGAs, there is also a shift in the
way to program them. The development of High-Level Synthesis (HLS)
tools allows developers to write code in high-level programming languages
like C, C++, or OpenCL, which is then translated into hardware
description languages (HDL) like Verilog or VHDL.

Mirko Mariotti June 25, 2025 June 25, 2025 33 / 33

	Verilog
	Modules
	Blocks
	Data
	Assignments and Operators
	Flow control
	Live examples

	Open Source and FPGA
	Open Source tools for simulation
	Open Source tools for synthesis and implementation

	Zynq, Pynq and Alveo
	Zynq
	Zynq VHDL demo
	Pynq
	Alveo

